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Preface

The present text evolved from course notes developed over a period of a
dozen years teaching undergraduates the basics of signal processing for
communications. The students had mostly a background in electrical engi-
neering, computer science or mathematics, and were typically in their third
year of studies at Ecole Polytechnique Fédérale de Lausanne (EPFL), with an
interest in communication systems. Thus, they had been exposed to signals
and systems, linear algebra, elements of analysis (e.g. Fourier series) and
some complex analysis, all of this being fairly standard in an undergraduate
program in engineering sciences.

The notes having reached a certain maturity, including examples, solved
problems and exercises, we decided to turn them into an easy-to-use text on
signal processing, with a look at communications as an application. But
rather than writing one more book on signal processing, of which many
good ones already exist, we deployed the following variations, which we
think will make the book appealing as an undergraduate text.

1. Less formal: Both authors came to signal processing by way of an in-
terest in music and think that signal processing is fun, and should be
taught to be fun! Thus, choosing between the intricacies of z-trans-
form inversion through contour integration (how many of us have
ever done this after having taken a class in signal processing?) or
showing the Karplus-Strong algorithm for synthesizing guitar sounds
(which also intuitively illustrates issues of stability along the way), you
can guess where our choice fell.

While mathematical rigor is not the emphasis, we made sure to be
precise, and thus the text is not approximate in its use of mathemat-
ics. Remember, we think signal processing to be mathematics applied
to a fun topic, and not mathematics for its own sake, nor a set of ap-
plications without foundations.
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2. More conceptual: We could have said “more abstract”, but this sounds

scary (and may seem in contradiction with point 1 above, which of
course it is not). Thus, the level of mathematical abstraction is prob-
ably higher than in several other texts on signal processing, but it al-
lows to think at a higher conceptual level, and also to build founda-
tions for more advanced topics. Therefore we introduce vector spaces,
Hilbert spaces, signals as vectors, orthonormal bases, projection the-
orem, to name a few, which are powerful concepts not usually em-
phasized in standard texts. Because these are geometrical concepts,
they foster understanding without making the text any more complex.
Further, this constitutes the foundation of modern signal processing,
techniques such as time-frequency analysis, filter banks and wavelets,
which makes the present text an easy primer for more advanced sig-
nal processing books. Of course, we must admit, for the sake of full
transparency, that we have been influenced by our research work, but
again, this has been fun too!

. More application driven: This is an engineering text, which should

help the student solve real problems. Both authors are engineers by
training and by trade, and while we love mathematics, we like to see
their “operational value”. That is, does the result make a difference in
an engineering application?

Certainly, the masterpiece in this regard is C. Shannon’s 1948 foun-
dational paper on “The Mathematical Theory of Communication”. It
completely revolutionized the way communication systems are de-
signed and built, and, still today, we mostly live in its legacy. Not
surprisingly, one of the key results of signal processing is the sam-
pling theorem for bandlimited functions (often attributed to Shan-
non, since it appears in the above-mentioned paper), the theorem
which single-handedly enabled the digital revolution. To a mathe-
matician, this is a simple corollary to Fourier series, and he/she might
suggest many other ways to represent such particular functions. How-
ever, the strength of the sampling theorem and its variations (e.g. over-
sampling or quantization) is that it is an operational theorem, robust,
and applicable to actual signal acquisition and reconstruction prob-
lems.

In order to showcase such powerful applications, the last chapter is
entirely devoted to developing an end-to-end communication system,
namely a modem for communicating digital information (or bits) over
an analog channel. This real-world application (which is present in all
modern communication devices, from mobile phones to ADSL boxes)
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nicely brings together many of the concepts and designs studied in
the previous chapters.

Being less formal, more abstract and application-driven seems almost
like moving simultaneously in several and possibly opposite directions, but
we believe we came up with the right balancing act. Ultimately, of course,
the readers and students are the judges!

A last and very important issue is the online access to the text and sup-
plementary material. A full html version together with the unavoidable er-
rata and other complementary material is available at www.sp4comm.org.
A solution manual is available to teachers upon request.

As a closing word, we hope you will enjoy the text, and we welcome your
feedback. Let signal processing begin, and be fun!

Martin Vetterli and Paolo Prandoni

Spring 2008, Paris and Grandvaux
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Chapter 1

What Is Digital Signal Processing?

A signal, technically yet generally speaking, is a formal description of a
phenomenon evolving over time or space; by signal processing we denote
any manual or “mechanical” operation which modifies, analyzes or other-
wise manipulates the information contained in a signal. Consider the sim-
ple example of ambient temperature: once we have agreed upon a formal
model for this physical variable — Celsius degrees, for instance — we can
record the evolution of temperature over time in a variety of ways and the
resulting data set represents a temperature “signal”. Simple processing op-
erations can then be carried out even just by hand: for example, we can plot
the signal on graph paper as in Figure 1.1, or we can compute derived pa-
rameters such as the average temperature in a month.

Conceptually, it is important to note that signal processing operates on
an abstract representation of a physical quantity and not on the quantity it-
self. At the same time, the fype of abstract representation we choose for the
physical phenomenon of interest determines the nature of a signal process-
ing unit. A temperature regulation device, for instance, is not a signal pro-
cessing system as a whole. The device does however contain a signal pro-
cessing core in the feedback control unit which converts the instantaneous
measure of the temperature into an ON/OFF trigger for the heating element.
The physical nature of this unit depends on the temperature model: a sim-
ple design is that of a mechanical device based on the dilation of a metal
sensor; more likely, the temperature signal is a voltage generated by a ther-
mocouple and in this case the matched signal processing unit is an opera-
tional amplifier.

Finally, the adjective “digital” derives from digitus, the Latin word for fin-
ger: it concisely describes a world view where everything can be ultimately
represented as an integer number. Counting, first on one’s fingers and then
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Figure 1.1 Temperature measurements over a month.

in one’s head, is the earliest and most fundamental form of abstraction; as
children we quickly learn that counting does indeed bring disparate objects
(the proverbial “apples and oranges”) into a common modeling paradigm,
i.e. their cardinality. Digital signal processing is a flavor of signal processing
in which everything including time is described in terms of integer num-
bers; in other words, the abstract representation of choice is a one-size-fit-
all countability. Note that our earlier “thought experiment” about ambient
temperature fits this paradigm very naturally: the measuring instants form
a countable set (the days in a month) and so do the measures themselves
(imagine a finite number of ticks on the thermometer’s scale). In digital
signal processing the underlying abstract representation is always the set
of natural numbers regardless of the signal’s origins; as a consequence, the
physical nature of the processing device will also always remain the same,
thatis, a general digital (micro)processor. The extraordinary power and suc-
cess of digital signal processing derives from the inherent universality of its
associated “world view”.

1.1 Some History and Philosophy

1.1.1 Digital Signal Processing under the Pyramids

Probably the earliest recorded example of digital signal processing dates
back to the 25th century BC. At the time, Egypt was a powerful kingdom
reaching over a thousand kilometers south of the Nile’s delta. For all its
latitude, the kingdom’s populated area did not extend for more than a few
kilometers on either side of the Nile; indeed, the only inhabitable areas in
an otherwise desert expanse were the river banks, which were made fertile
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by the yearly flood of the river. After a flood, the banks would be left cov-
ered with a thin layer of nutrient-rich silt capable of supporting a full agri-
cultural cycle. The floods of the Nile, however, were") a rather capricious
meteorological phenomenon, with scant or absent floods resulting in little
or no yield from the land. The pharaohs quickly understood that, in order
to preserve stability, they would have to set up a grain buffer with which
to compensate for the unreliability of the Nile’s floods and prevent poten-
tial unrest in a famished population during “dry” years. As a consequence,
studying and predicting the trend of the floods (and therefore the expected
agricultural yield) was of paramount importance in order to determine the
operating point of a very dynamic taxation and redistribution mechanism.
The floods of the Nile were meticulously recorded by an array of measuring
stations called “nilometers” and the resulting data set can indeed be con-
sidered a full-fledged digital signal defined on a time base of twelve months.
The Palermo Stone, shown in the left panel of Figure 1.2, is a faithful record
of the data in the form of a table listing the name of the current pharaoh
alongside the yearly flood level; a more modern representation of an flood
data set is shown on the left of the figure: bar the references to the pharaohs,
the two representations are perfectly equivalent. The Nile’s behavior is still
an active area of hydrological research today and it would be surprising if
the signal processing operated by the ancient Egyptians on their data had
been of much help in anticipating for droughts. Yet, the Palermo Stone is
arguably the first recorded digital signal which is still of relevance today.

1518 l
Uil 1 I [ 1 1 1
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Figure 1.2 Representations of flood data for the river Nile: circa 2500 BC (left) and
2000 AD (right).

(IThe Nile stopped flooding Egypt in 1964, when the Aswan dam was completed.
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1.1.2 The Hellenic Shift to Analog Processing

“Digital” representations of the world such as those depicted by the Palermo
Stone are adequate for an environment in which quantitative problems are
simple: counting cattle, counting bushels of wheat, counting days and so
on. As soon as the interaction with the world becomes more complex, so
necessarily do the models used to interpret the world itself. Geometry, for
instance, is born of the necessity of measuring and subdividing land prop-
erty. In the act of splitting a certain quantity into parts we can already see
the initial difficulties with an integer-based world view ;@ yet, until the Hel-
lenic period, western civilization considered natural numbers and their ra-
tios all that was needed to describe nature in an operational fashion. In the
6th century BC, however, a devastated Pythagoras realized that the side
and the diagonal of a square are incommensurable, i.e. that v2 is not a sim-
ple fraction. The discovery of what we now call irrational numbers “sealed
the deal” on an abstract model of the world that had already appeared in
early geometric treatises and which today is called the continuum. Heavily
steeped in its geometric roots (i.e. in the infinity of points in a segment), the
continuum model postulates that time and space are an uninterrupted flow
which can be divided arbitrarily many times into arbitrarily (and infinitely)
small pieces. In signal processing parlance, this is known as the “analog”
world model and, in this model, integer numbers are considered primitive
entities, as rough and awkward as a set of sledgehammers in a watchmaker’s
shop.

In the continuum, the infinitely big and the infinitely small dance to-
gether in complex patterns which often defy our intuition and which re-
quired almost two thousand years to be properly mastered. This is of course
not the place to delve deeper into this extremely fascinating epistemologi-
cal domain; suffice it to say that the apparent incompatibility between the
digital and the analog world views appeared right from the start (i.e. from
the 5th century BC) in Zeno’s works; we will appreciate later the immense
import that this has on signal processing in the context of the sampling the-
orem.

Zeno’s paradoxes are well known and they underscore this unbridgeable
gap between our intuitive, integer-based grasp of the world and a model of

@The layman’s aversion to “complicated” fractions is at the basis of many counting sys-
tems other than the decimal (which is just an accident tied to the number of human fin-
gers). Base-12 for instance, which is still so persistent both in measuring units (hours in
a day, inches in a foot) and in common language (“a dozen”) originates from the simple
fact that 12 happens to be divisible by 2, 3 and 4, which are the most common number
of parts an item is usually split into. Other bases, such as base-60 and base-360, have
emerged from a similar abundance of simple factors.
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the world based on the continuum. Consider for instance the dichotomy
paradox; Zeno states that if you try to move along a line from point A to
point B you will never in fact be able to reach your destination. The rea-
soning goes as follows: in order to reach B, you will have to first go through
point C, which is located mid-way between A and B; but, even before you
reach C, you will have to reach D, which is the midpoint between A and C;
and so on ad infinitum. Since there is an infinity of such intermediate points,
Zeno argues, moving from A to B requires you to complete an infinite num-
ber of tasks, which is humanly impossible. Zeno of course was well aware
of the empirical evidence to the contrary but he was brilliantly pointing out
the extreme trickery of a model of the world which had not yet formally de-
fined the concept of infinity. The complexity of the intellectual machinery
needed to solidly counter Zeno’s argument is such that even today the para-
dox is food for thought. A first-year calculus student may be tempted to
offhandedly dismiss the problem by stating

iginzl (1.1)

n=1

but this is just a void formalism begging the initial question if the underlying
notion of the continuum is not explicitly worked out.®® In reality Zeno’s
paradoxes cannot be “solved”, since they cease to be paradoxes once the
continuum model is fully understood.

1.1.3 “Gentlemen: calculemus’”’

The two competing models for the world, digital and analog, coexisted quite
peacefully for quite a few centuries, one as the tool of the trade for farmers,
merchants, bankers, the other as an intellectual pursuit for mathematicians
and astronomers. Slowly but surely, however, the increasing complexity of
an expanding world spurred the more practically-oriented minds to pursue
science as a means to solve very tangible problems besides describing the
motion of the planets. Calculus, brought to its full glory by Newton and
Leibnitz in the 17th century, proved to be an incredibly powerful tool when
applied to eminently practical concerns such as ballistics, ship routing, me-
chanical design and so on; such was the faith in the power of the new sci-
ence that Leibnitz envisioned a not-too-distant future in which all human
disputes, including problems of morals and politics, could be worked out
with pen and paper: “gentlemen, calculemus”. If only.

® An easy rebuttal of the bookish reductio above is asking to explain why > 1/n diverges
while 3" 1/n? = 72/6 (Euler, 1740).
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As Cauchy unsurpassably explained later, everything in calculus is a limit
and therefore everything in calculus is a celebration of the power of the con-
tinuum. Still, in order to apply the calculus machinery to the real world, the
real world has to be modeled as something calculus understands, namely a
function of a real (i.e. continuous) variable. As mentioned before, there are
vast domains of research well behaved enough to admit such an analytical
representation; astronomy is the first one to come to mind, but so is ballis-
tics, for instance. If we go back to our temperature measurement example,
however, we run into the first difficulty of the analytical paradigm: we now
need to model our measured temperature as a function of continuous time,
which means that the value of the temperature should be available at any
given instant and not just once per day. A “temperature function” as in Fig-
ure 1.3 is quite puzzling to define if all we have (and if all we can have, in fact)
is just a set of empirical measurements reasonably spaced in time. Even in
the rare cases in which an analytical model of the phenomenon is available,
a second difficulty arises when the practical application of calculus involves
the use of functions which are only available in tabulated form. The trigono-
metric and logarithmic tables are a typical example of how a continuous
model needs to be made countable again in order to be put to real use. Al-
gorithmic procedures such as series expansions and numerical integration
methods are other ways to bring the analytic results within the realm of the
practically computable. These parallel tracks of scientific development, the
“Platonic” ideal of analytical results and the slide rule reality of practitioners,
have coexisted for centuries and they have found their most durable mutual
peace in digital signal processing, as will appear shortly.

15 |[°C] 1

Figure 1.3 Temperature “function” in a continuous-time world model.
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1.2 Discrete Time

One of the fundamental problems in signal processing is to obtain a per-
manent record of the signal itself. Think back of the ambient temperature
example, or of the floods of the Nile: in both cases a description of the phe-
nomenon was gathered by a naive sampling operation, i.e. by measuring the
quantity of interest at regular intervals. This is a very intuitive process and
it reflects the very natural act of “looking up the current value and writing
it down”. Manually this operation is clearly quite slow but it is conceivable
to speed it up mechanically so as to obtain a much larger number of mea-
surements per unit of time. Our measuring machine, however fast, still will
never be able to take an infiniteamount of samples in a finite time interval:
we are back in the clutches of Zeno’s paradoxes and one would be tempted
to conclude that a true analytical representation of the signal is impossible
to obtain.

Figure 1.4 A thermograph.

At the same time, the history of applied science provides us with many
examples of recording machines capable of providing an “analog” image of
a physical phenomenon. Consider for instance a thermograph: this is a me-
chanical device in which temperature deflects an ink-tipped metal stylus in
contact with a slowly rolling paper-covered cylinder. Thermographs like the
one sketched in Figure 1.4 are still currently in use in some simple weather
stations and they provide a chart in which a temperature function as in Fig-
ure 1.3 is duly plotted. Incidentally, the principle is the same in early sound
recording devices: Edison’s phonograph used the deflection of a steel pin
connected to a membrane to impress a “continuous-time” sound wave as
a groove on a wax cylinder. The problem with these analog recordings is
that they are not abstract signals but a conversion of a physical phenomenon
into another physical phenomenon: the temperature, for instance, is con-
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verted into the amount of ink on paper while the sound pressure wave is
converted into the physical depth of the groove. The advent of electron-
ics did not change the concept: an audio tape, for instance, is obtained by
converting a pressure wave into an electrical current and then into a mag-
netic deflection. The fundamental consequence is that, for analog signals,
a different signal processing system needs to be designed explicitly for each
specific form of recording.

To h

1111

1 D

Figure 1.5 Analytical and empirical averages.

Consider for instance the problem of computing the average tempera-
ture over a certain time interval. Calculus provides us with the exact answer
C if we know the elusive “temperature function” f(t) over an interval [Ty, T;]
(see Figure 1.5, top panel):

C=

T
TI_TJ frydt (1.2)

To

We can try to reproduce the integration with a “machine” adapted to the
particular representation of temperature we have at hand: in the case of the
thermograph, for instance, we can use a planimeter as in Figure 1.6, a man-
ual device which computes the area of a drawn surface; in a more modern
incarnation in which the temperature signal is given by a thermocouple, we
can integrate the voltage with the RC network in Figure 1.7. In both cases,
in spite of the simplicity of the problem, we can instantly see the practi-
cal complications and the degree of specialization needed to achieve some-
thing as simple as an average for an analog signal.
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Figure 1.6 The planimeter: a mechanical integrator.

Now consider the case in which all we have is a set of daily measure-
ments ¢y, C2,...,Cp as in Figure 1.1; the “average” temperature of our mea-
surements over D days is simply:

1L
C= o 2.Cn (1.3)

n=1

(as shown in the bottom panel of Figure 1.5) and this is an elementary sum
of D terms which anyone can carry out by hand and which does not depend
on how the measurements have been obtained: wickedly simple! So, obvi-
ously, the question is: “How different (if at all) is C from C ?” In order to find
out we can remark that if we accept the existence of a temperature function
f(¢) then the measured values c,, are samples of the function taken one day
apart:

cn=[f(nT;)

(where T; is the duration of a day). In this light, the sum (1.3) is just the
Riemann approximation to the integral in (1.2) and the question becomes
an assessment on how good an approximation that is. Another way to look
at the problem is to ask ourselves how much information we are discarding
by only keeping samples of a continuous-time function.

(©, @ O

Figure 1.7 The RC network: an electrical integrator.
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The answer, which we will study in detail in Chapter 9, is that in fact
the continuous-time function and the set of samples are perfectly equiva-
lent representations — provided that the underlying physical phenomenon
“doesn’t change too fast”. Let us put the proviso aside for the time being
and concentrate instead on the good news: first, the analog and the digi-
tal world can perfectly coexist; second, we actually possess a constructive
way to move between worlds: the sampling theorem, discovered and redis-
covered by many at the beginning of the 20th century®, tells us that the
continuous-time function can be obtained from the samples as

)= Z cnSin(ﬂ(t_nTS)/Ts) (1.4)

ot —nTy)/ T

n=—00

So, in theory, once we have a set of measured values, we can build the
continuous-time representation and use the tools of calculus. In reality
things are even simpler: if we plug (1.4) into our analytic formula for the
average (1.2) we can show that the result is a simple sum like (1.3). So we
don’t need to explicitly go “through the looking glass” back to continuous-
time: the tools of calculus have a discrete-time equivalent which we can use
directly.

The equivalence between the discrete and continuous representations
only holds for signals which are sufficiently “slow” with respect to how fast
we sample them. This makes a lot of sense: we need to make sure that
the signal does not do “crazy” things between successive samples; only if
it is smooth and well behaved can we afford to have such sampling gaps.
Quantitatively, the sampling theorem links the speed at which we need to
repeatedly measure the signal to the maximum frequency contained in its
spectrum. Spectra are calculated using the Fourier transform which, inter-
estingly enough, was originally devised as a tool to break periodic functions
into a countable set of building blocks. Everything comes together.

1.3 Discrete Amplitude

While it appears that the time continuum has been tamed by the sampling
theorem, we are nevertheless left with another pesky problem: the precision
of our measurements. If we model a phenomenon as an analytical func-
tion, not only is the argument (the time domain) a continuous variable but
so is the function’s value (the codomain); a practical measurement, how-
ever, will never achieve an infinite precision and we have another paradox

@Amongst the credited personnel: Nyquist, Whittaker, Kotel'nikov, Raabe, Shannon and
Someya.
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on our hands. Consider our temperature example once more: we can use
a mercury thermometer and decide to write down just the number of de-
grees; maybe we can be more precise and note the half-degrees as well; with
a magnifying glass we could try to record the tenths of a degree — but we
would most likely have to stop there. With a more sophisticated thermo-
couple we could reach a precision of one hundredth of a degree and possibly
more but, still, we would have to settle on a maximum number of decimal
places. Now, if we know that our measures have a fixed number of digits,
the set of all possible measures is actually countable and we have effectively
mapped the codomain of our temperature function onto the set of integer
numbers. This process is called quantization and it is the method, together
with sampling, to obtain a fully digital signal.

In a way, quantization deals with the problem of the continuum in a
much “rougher” way than in the case of time: we simply accept a loss of
precision with respect to the ideal model. There is a very good reason for
that and it goes under the name of noise. The mechanical recording devices
we just saw, such as the thermograph or the phonograph, give the illusion
of analytical precision but are in practice subject to severe mechanical lim-
itations. Any analog recording device suffers from the same fate and even
if electronic circuits can achieve an excellent performance, in the limit the
unavoidable thermal agitation in the components constitutes a noise floor
which limits the “equivalent number of digits”. Noise is a fact of nature that
cannot be eliminated, hence our acceptance of a finite (i.e. countable) pre-
cision.

Figure 1.8 Analog and digital computers.

Noise is not just a problem in measurement but also in processing.
Figure 1.8 shows the two archetypal types of analog and digital computing
devices; while technological progress may have significantly improved the
speed of each, the underlying principles remain the same for both. An ana-
log signal processing system, much like the slide rule, uses the displacement
of physical quantities (gears or electric charge) to perform its task; each el-
ement in the system, however, acts as a source of noise so that complex or,
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more importantly, cheap designs introduce imprecisions in the final result
(good slide rules used to be very expensive). On the other hand the aba-
cus, working only with integer arithmetic, is a perfectly precise machine®
even if it's made with rocks and sticks. Digital signal processing works with
countable sequences of integers so that in a digital architecture no process-
ing noise is introduced. A classic example is the problem of reproducing a
signal. Before mp3 existed and file sharing became the bootlegging method
of choice, people would “make tapes”. When someone bought a vinyl record
he would allow his friends to record it on a cassette; however, a “peer-to-
peer” dissemination of illegally taped music never really took off because of
the “second generation noise”, i.e. because of the ever increasing hiss that
would appear in a tape made from another tape. Basically only first genera-
tion copies of the purchased vinyl were acceptable quality on home equip-
ment. With digital formats, on the other hand, duplication is really equiva-
lent to copying down a (very long) list of integers and even very cheap equip-
ment can do that without error.

Finally, a short remark on terminology. The amplitude accuracy of a set
of samples is entirely dependent on the processing hardware; in current
parlance this is indicated by the number of bits per sample of a given rep-
resentation: compact disks, for instance, use 16 bits per sample while DVDs
use 24. Because of its “contingent” nature, quantization is almost always ig-
nored in the core theory of signal processing and all derivations are carried
out as if the samples were real numbers; therefore, in order to be precise,
we will almost always use the term discrete-time signal processing and leave
the label “digital signal processing” (DSP) to the world of actual devices. Ne-
glecting quantization will allow us to obtain very general results but care
must be exercised: in the practice, actual implementations will have to deal
with the effects of finite precision, sometimes with very disruptive conse-
quences.

1.4 Communication Systems

Signals in digital form provide us with a very convenient abstract represen-
tation which is both simple and powerful; yet this does not shield us from
the need to deal with an “outside” world which is probably best modeled by
the analog paradigm. Consider a mundane act such as placing a call on a
cell phone, as in Figure 1.9: humans are analog devices after all and they
produce analog sound waves; the phone converts these into digital format,

®As long as we don’t need to compute square roots; luckily, linear systems (which is what
interests us) are made up only of sums and multiplications.
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does some digital processing and then outputs an analog electromagnetic
wave on its antenna. The radio wave travels to the base station in which it
is demodulated, converted to digital format to recover the voice signal. The
call, as a digital signal, continues through a switch and then is injected into
an optical fiber as an analog light wave. The wave travels along the network
and then the process is inverted until an analog sound wave is generated by
the loudspeaker at the receiver’s end.

)
) air fiber
o il > Base Station Switch j‘

copper coax
~— Switch CcO

Figure 1.9 A prototypical telephone call and the associated transitions from the
digital to the analog domain and back; processing in the blocks is done digitally
while the links between blocks are over an analog medium.

Communication systems are in general a prime example of sophisti-
cated interplay between the digital and the analog world: while all the pro-
cessing is undoubtedly best done digitally, signal propagation in a medium
(be it the the air, the electromagnetic spectrum or an optical fiber) is the do-
main of differential (rather than difference) equations. And yet, even when
digital processing must necessarily hand over control to an analog interface,
it does so in a way that leaves no doubt as to who's boss, so to speak: for,
instead of transmitting an analog signal which is the reconstructed “real”
function as per (1.4), we always transmit an analog signal which encodes the
digital representation of the data. This concept is really at the heart of the
“digital revolution” and, just like in the cassette tape example, it has to do
with noise.

Imagine an analog voice signal s(¢) which is transmitted over a (long)
telephone line; a simplified description of the received signal is

si(t)=as(t)+n(t)

where the parameter a, with a < 1, is the attenuation that the signal incurs
and where n(t) is the noise introduced by the system. The noise function
is obviously unknown (it is often modeled as a Gaussian process, as we
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will see) and so, once it’s added to the signal, it's impossible to eliminate it.
Because of attenuation, the receiver will include an amplifier with gain G to
restore the voice signal to its original level; with G = 1/a we will have

Sa(t)=Gs,(t)=s(t)+Gn(r)

Unfortunately, as it appears, in order to regenerate the analog signal we also
have amplified the noise G times; clearly, if G is large (i.e. if there is a lot of
attenuation to compensate for) the voice signal ends up buried in noise. The
problem is exacerbated if many intermediate amplifiers have to be used in
cascade, as is the case in long submarine cables.

Consider now a digital voice signal, that is, a discrete-time signal whose
samples have been quantized over, say, 256 levels: each sample can there-
fore be represented by an 8-bit word and the whole speech signal can be
represented as a very long sequence of binary digits. We now build an ana-
log signal as a fwo-level signal which switches for a few instants between,
say, —1 Vand +1 V for every “0” and “1” bit in the sequence respectively.
The received signal will still be

si(t)=as(t)+ n(t)

but, to regenerate it, instead of linear amplification we can use nonlinear
thresholding:

{ +1 ifs,(£)>0
Sa(t):
—1 ifs,(£)<0

Figure 1.10 clearly shows that as long as the magnitude of the noise is less
than a the two-level signal can be regenerated perfectly; furthermore, the
regeneration process can be repeated as many times as necessary with no
overall degradation.

o g b
e —

Figure 1.10 Two-level analog signal encoding a binary sequence: original signal
s(t) (light gray) and received signal s,(¢) (black) in which both attenuation and
noise are visible.
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In reality of course things are a little more complicated and, because of
the nature of noise, it is impossible to guarantee that some of the bits won't
be corrupted. The answer is to use error correcting codes which, by introduc-
ing redundancy in the signal, make the sequence of ones and zeros robust
to the presence of errors; a scratched CD can still play flawlessly because of
the Reed-Solomon error correcting codes used for the data. Data coding is
the core subject of Information Theory and it is behind the stellar perfor-
mance of modern communication systems; interestingly enough, the most
successful codes have emerged from group theory, a branch of mathemat-
ics dealing with the properties of closed sets of integer numbers. Integers
again! Digital signal processing and information theory have been able to
join forces so successfully because they share a common data model (the in-
teger) and therefore they share the same architecture (the processor). Com-
puter code written to implement a digital filter can dovetail seamlessly with
code written to implement error correction; linear processing and nonlinear
flow control coexist naturally.

A simple example of the power unleashed by digital signal processing
is the performance of transatlantic cables. The first operational telegraph
cable from Europe to North America was laid in 1858 (see Fig. 1.11); it
worked for about a month before being irrecoverably damaged.® From
then on, new materials and rapid progress in electrotechnics boosted the
performance of each subsequent cable; the key events in the timeline of
transatlantic communications are shown in Table 1.1. The first transatlantic
telephone cable was laid in 1956 and more followed in the next two decades
with increasing capacity due to multicore cables and better repeaters; the
invention of the echo canceler further improved the number of voice chan-
nels for already deployed cables. In 1968 the first experiments in PCM digital
telephony were successfully completed and the quantum leap was around
the corner: by the end of the 70’s cables were carrying over one order of
magnitude more voice channels than in the 60’s. Finally, the deployment of
the first fiber optic cable in 1988 opened the door to staggering capacities
(and enabled the dramatic growth of the Internet).

Finally, it's impossible not to mention the advent of data compression
in this brief review of communication landmarks. Again, digital processing
allows the coexistence of standard processing with sophisticated decision

©®Ohm’s law was published in 1861, so the first transatlantic cable was a little bit the
proverbial cart before the horse. Indeed, the cable circuit formed an enormous RC
equivalent circuit, i.e. a big lowpass filter, so that the sharp rising edges of the Morse
symbols were completely smeared in time. The resulting intersymbol interference was
so severe that it took hours to reliably send even a simple sentence. Not knowing how
to deal with the problem, the operator tried to increase the signaling voltage (“crank up
the volume”) until, at 4000 V, the cable gave up.
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Figure 1.11 Laying the first transatlantic cable.

Table 1.1 The main transatlantic cables from 1858 to our day.

Cable | Year | Type | Signaling | Capacity

1858 | Coax | telegraph | afew words per hour

1866 | Coax | telegraph | 6-8 words per minute

1928 | Coax | telegraph | 2500 characters per minute

TAT-1 1956 | Coax | telephone | 36 [48 by 1978] voice channels

TAT-3 1963 | Coax | telephone | 138 [276 by 1986] voice channels

TAT-5 1970 | Coax | telephone | 845 [2112 by 1993] voice channels
TAT-6 1976 | Coax | telephone | 4000 [10,000 by 1994] voice channels
TAT-8 1988 | Fiber data 280 Mbit/s (~ 40,000 voice channels)
TAT-14 | 2000 | Fiber data 640 Gbit/s (~ 9,700,000 voice channels)

logic; this enables the implementation of complex data-dependent com-
pression techniques and the inclusion of psychoperceptual models in order
to match the compression strategy to the characteristics of the human vi-
sual or auditory system. A music format such as mp3 is perhaps the first
example to come to mind but, as shown in Table 1.2, all communication do-
mains have been greatly enhanced by the gains in throughput enabled by
data compression.
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Table 1.2 Uncompressed and compressed data rates.

Signal Uncompressed Rate Common Rate
Music | 4.32 Mbit/s (CD audio) 128 Kbit/s (MP3)
Voice 64 Kbit/s (AM radio) 4.8 Kbit/s (cellphone CELP)
Photos 14 MB (raw) 300 KB (JPEG)

Video 170 Mbit/s (PAL) 700 Kbit/s (DivX)

1.5 How to Read this Book

This book tries to build a largely self-contained development of digital sig-
nal processing theory from within discrete time, while the relationship to the
analog model of the world is tackled only after all the fundamental “pieces
of the puzzle” are already in place. Historically, modern discrete-time pro-
cessing started to consolidate in the 50’s when mainframe computers be-
came powerful enough to handle the effective simulations of analog elec-
tronic networks. By the end of the 70’s the discipline had by all standards
reached maturity; so much so, in fact, that the major textbooks on the sub-
ject still in use today had basically already appeared by 1975. Because of its
ancillary origin with respect to the problems of that day, however, discrete-
time signal processing has long been presented as a tributary to much more
established disciplines such as Signals and Systems. While historically justi-
fiable, that approach is no longer tenable today for three fundamental rea-
sons: first, the pervasiveness of digital storage for data (from CDs to DVDs
to flash drives) implies that most devices today are designed for discrete-
time signals to start with; second, the trend in signal processing devices is
to move the analog-to-digital and digital-to-analog converters at the very
beginning and the very end of the processing chain so that even “classically
analog” operations such as modulation and demodulation are now done in
discrete-time; third, the availability of numerical packages like Matlab pro-
vides a testbed for signal processing experiments (both academically and
just for fun) which is far more accessible and widespread than an electron-
ics lab (not to mention affordable).

The idea therefore is to introduce discrete-time signals as a self-standing
entity (Chap. 2), much in the natural way of a temperature sequence or
a series of flood measurements, and then to remark that the mathemati-
cal structures used to describe discrete-time signals are one and the same
with the structures used to describe vector spaces (Chap. 3). Equipped with
the geometrical intuition afforded to us by the concept of vector space, we
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can proceed to “dissect” discrete-time signals with the Fourier transform,
which turns out to be just a change of basis (Chap. 4). The Fourier trans-
form opens the passage between the time domain and the frequency do-
main and, thanks to this dual understanding, we are ready to tackle the
concept of processing as performed by discrete-time linear systems, also
known as filters (Chap. 5). Next comes the very practical task of designing
a filter to order, with an eye to the subtleties involved in filter implementa-
tion; we will mostly consider FIR filters, which are unique to discrete time
(Chaps 6 and 7). After a brief excursion in the realm of stochastic sequences
(Chap. 8) we will finally build a bridge between our discrete-time world and
the continuous-time models of physics and electronics with the concepts of
sampling and interpolation (Chap. 9); and digital signals will be completely
accounted for after a study of quantization (Chap. 10). We will finally go
back to purely discrete time for the final topic, multirate signal processing
(Chap. 11), before putting it all together in the final chapter: the analysis of
a commercial voiceband modem (Chap. 12).

Further Reading

The Bible of digital signal processing was and remains Discrete-Time Sig-
nal Processing, by A. V. Oppenheim and R. W. Schafer (Prentice-Hall, last
edition in 1999); exceedingly exhaustive, it is a must-have reference. For
background in signals and systems, the eponimous Signals and Systems, by
Oppenheim, Willsky and Nawab (Prentice Hall, 1997) is a good start.

Most of the historical references mentioned in this introduction can be
supplemented by simple web searches. Other comprehensive books on digi-
tal signal processing include S. K. Mitra’s Digital Signal Processing (McGraw
Hill, 2006) and Digital Signal Processing, by J. G. Proakis and D. K. Manolakis
(Prentis Hall 2006). For a fascinating excursus on the origin of calculus, see
D. Hairer and G. Wanner, Analysis by its History (Springer-Verlag, 1996). A
more than compelling epistemological essay on the continuum is Every-
thing and More, by David Foster Wallace (Norton, 2003), which manages to
be both profound and hilarious in an unprecedented way.

Finally, the very prolific literature on current signal processing research
is published mainly by the Institute of Electronics and Electrical Engineers
(IEEE) in several of its transactions such as IEEE Transactions on Signal Pro-
cessing, IEEE Transactions on Image Processing and IEEE Transactions on
Speech and Audio Processing.



Chapter 2

Discrete-Time Signals

In this Chapter we define more formally the concept of the discrete-time
signal and establish an associated basic taxonomy used in the remainder of
the book. Historically, discrete-time signals have often been introduced as
the discretized version of continuous-time signals, i.e. as the sampled values
of analog quantities, such as the voltage at the output of an analog circuit;
accordingly, many of the derivations proceeded within the framework of an
underlying continuous-time reality. In truth, the discretization of analog
signals is only part of the story, and a rather minor one nowadays. Digi-
tal signal processing, especially in the context of communication systems,
is much more concerned with the synthesis of discrete-time signals rather
than with sampling. That is why we choose to introduce discrete-time sig-
nals from an abstract and self-contained point of view.

2.1 Basic Definitions

A discrete-time signal is a complex-valued sequence. Remember that a se-
quence is defined as a complex-valued function of an integer index n, with
n € Z; as such, it is a two-sided, infinite collection of values. A sequence can
be defined analytically in closed form, as for example:

x[n]=((n+5) mod 11)—5 2.1)
shown as the “triangular” waveform plotted in Figure 2.1; or

x[n]:ejzﬂ_on 2.2)
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Figure 2.1 Triangular discrete-time wave.

which is a complex exponential of period 40 samples, plotted in Figure 2.2.
An example of a sequence drawn from the real world is

x[n] =The average Dow-Jones index in year n 2.3)

plotted in Figure 2.3 from year 1900 to 2002. Another example, this time of a
random sequence, is

x[n] =the n-th output of a random source %/(—1,1) (2.4)

arealization of which is plotted in Figure 2.4.
A few notes are in order:

e The dependency of the sequence’s values on an integer-valued index
n is made explicit by the use of square brackets for the functional ar-
gument. This is standard notation in the signal processing literature.

e Thesequence index n is best thought of as a measure of dimensionless
time; while it has no physical unit of measure, it imposes a chronolog-
ical order on the values of the sequences.

e We consider complex-valued discrete-time signals; while physical sig-
nals can be expressed by real quantities, the generality offered by the
complex domain is particularly useful in designing systems which syn-
thesize signal, such as data communication systems.

¢ In graphical representations, when we need to emphasize the discrete-
time nature of the signal, we resort to stem (or “lollipop”) plots as in
Figure 2.1. When the discrete-time domain is understood, we will of-
ten use a function-like representation as in Figure 2.3. In the latter
case, each ordinate of the sequence is graphically connected to its
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Figure 2.2 Discrete-time complex exponential x[n] = e/%” (real and imaginary
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neighbors, giving the illusion of a continuous-time function: while
this makes the plot easier on the eye, it must be remembered that the
signal is defined only over a discrete set.

2.1.1 The Discrete-Time Abstraction

While analytical forms of discrete-time signals such as the ones above are
useful to illustrate the key points of signal processing and are absolutely
necessary in the mathematical abstractions which follow, they are non-
etheless just that, abstract examples. How does the notion of a discrete-
time signal relate to the world around us? A discrete-time signal, in fact,
captures our necessarily limited ability to take repeated accurate measure-
ments of a physical quantity. We might be keeping track of the stock market
index at the end of each day to draw a pencil and paper chart; or we might
be measuring the voltage level at the output of a microphone 44,100 times
per second (obviously not by hand!) to record some music via the com-
puter’s soundcard. In both cases we need “time to write down the value”
and are therefore forced to neglect everything that happens between mea-
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suring times. This “look and write down” operation is what is normally re-
ferred to as sampling. There are real-world phenomena which lend them-
selves very naturally and very intuitively to a discrete-time representation:
the daily Dow-Jones index, for example, solar spots, yearly floods of the Nile,
etc. There seems to be no irrecoverable loss in this neglect of intermediate
values. But what about music, or radio waves? At this point it is not alto-
gether clear from an intuitive point of view how a sampled measurement of
these phenomena entail no loss of information. The mathematical proof of
this will be shown in detail when we study the sampling theorem; for the
time being let us say that “the proof of the cake is in the eating”: just listen
to your favorite CD!

The important point to make here is that, once a real-world signal is
converted to a discrete-time representation, the underlying notion of “time
between measurements” becomes completely abstract. All we are left with is
a sequence of numbers, and all signal processing manipulations, with their
intended results, are independent of the way the discrete-time signal is ob-
tained. The power and the beauty of digital signal processing lies in part
with its invariance with respect to the underlying physical reality. This is in
stark contrast with the world of analog circuits and systems, which have to
be realized in a version specific to the physical nature of the input signals.

2.1.2 Basic Signals

The following sequences are fundamental building blocks for the theory of
signal processing.

Impulse. The discrete-time impulse (or discrete-time delta function) is po-
tentially the simplest discrete-time signal; it is shown in Figure 2.5(a) and is
defined as

1 =0
5[n] ={ " 2.5)
0 n#o0

Unit Step. The discrete-time unit step is shown in Figure 2.5(b) and is de-
fined by the following expression:

{ 1 n>0
uln]l= (2.6)
0 n<o0

The unit step can be obtained via a discrete-time integration of the impulse
(see eq. (2.16)).



24 Basic Definitions

Exponential Decay. The discrete-time exponential decay is shown in
Figure 2.5(c) and is defined as
x[n]=a"uln], acC, lal<1 2.7

The exponential decay is, as we will see, the free response of a discrete-time
first order recursive filter. Exponential sequences are well-behaved only for
values of a less than one in magnitude; sequences in which |a| > 1 are un-
bounded and represent an unstable behavior (their energy and power are
both infinite).

Complex Exponential. The discrete-time complex exponential has al-
ready been shown in Figure 2.2 and is defined as

Special cases of the complex exponential are the real-valued discrete-time
sinusoidal oscillations:

x[n]=sin(won + ¢) (2.9)
x[n]=cos(won+ ¢) (2.10)

An example of (2.10) is shown in Figure 2.5(d).

“15-10 -5 0 5 10 15 -15-10 -5 0 5 10 15

(@) (b)

-15-10 -5 0 5 10 15

,HHTTTT;;...,. *ﬁﬂ[ﬁlﬁ 0 SIH ml}s

(© (d)

Figure 2.5 Basic signals. Impulse (a); unit step (b); decaying exponential (c); real-
valued sinusoid (d).
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2.1.3 Digital Frequency

With respect to the oscillatory behavior captured by the complex exponen-
tial, a note on the concept of “frequency” is in order. In the continuous-time
world (the world of textbook physics, to be clear), where time is measured in
seconds, the usual unit of measure for frequency is the Hertz which is equiv-
alent to 1/second. In the discrete-time world, where the index n represents
a dimensionless time, “digital” frequency is expressed in radians which is
itself a dimensionless quantity.(!. The best way to appreciate this is to con-
sider an algorithm to generate successive samples of a discrete-time sinu-
soid at a digital frequency wo:

w «—0; initialization

¢ — initial phase value;

repeat
x —sin(w + ¢); compute next value
w — w+ wo; update phase

until done

At each iteration,® the argument of the trigonometric function is incre-
mented by wo and a new output sample is produced. With this in mind, it is
easy to see that the highest frequency manageable by a discrete-time system
is wmax = 27; for any frequency larger than this, the inner 27-periodicity of
the trigonometric functions “maps back” the output values to a frequency
between 0 and 27t. This can be expressed as an equation:

sin(n(w+2kn)+ ¢) =sin(nw + ¢) (2.11)
for all values of k € Z. This 2r-equivalence of digital frequencies is a perva-

sive concept in digital signal processing and it has many important conse-
quences which we will study in detail in the next Chapters.

() An angle measure in radians is dimensionless since it is defined in terms of the ratio of
two lengths, the radius and the arc subtended by the measured angle on an arbitrary
circle.

@Here is the algorithm written in C:

extern double omega0;
extern double phi;
static double omega = 0;
double GetNextValue()
{
omega += omegal;
return sin(omega + phi);
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2.1.4 Elementary Operators

In this Section we present some elementary operations on sequences.
Shift. A sequence x[n], shifted by an integer k is simply:
yln]=x[n—k] (2.12)

If k is positive, the signal is shifted “to the right”, meaning that the signal has
been delayed; if k is negative, the signal is shifted “to the left”, meaning
that the signal has been advanced. The delay operator can be indicated by
the following notation:

Zif{x[nl} =x[n—k]

Scaling. A sequence x[n] scaled by a factor a € C is
y[n]=ax[n] (2.13)

If o is real, then the scaling represents a simple amplification or attenuation
of the signal (when a > 1 and « < 1, respectively). If a is complex, amplifi-
cation and attenuation are compounded with a phase shift.

Sum. The sum of two sequences x[n] and w[n] is their term-by-term sum:
yIn]=x[n]+w[n] (2.14)

Please note that sum and scaling are linear operators. Informally, this means
scaling and sum behave “intuitively”:

a(x[n]+w(n]) = ax[n]+awn]
or

Ieix[n]+wln]} =x[n—-k]+wln—k]
Product. The product of two sequences x[n] and w[n] is their term-by-
term product

yIn]=x[n]wn] (2.15)

Integration. The discrete-time equivalent of integration is expressed by
the following running sum:

n

ylnl= > x[k] (2.16)

k=—00



Discrete-Time Signals 27

Intuitively, integration computes a non-normalized running average of the
discrete-time signal.

Differentiation. A discrete-time approximation to differentiation is the first-
order difference:®

ynl=x[n]—x[n—-1] (2.17)

With respect to Section 2.1.2, note how the unit step can be obtained by
applying the integration operator to the discrete-time impulse; conversely,
the impulse can be obtained by applying the differentiation operator to the
unit step.

2.1.5 The Reproducing Formula

The signal reproducing formula is a simple application of the basic signal
and signal properties that we have just seen and it states that

o0

x[n] = Z x[k]6[n — k] (2.18)

k=—00

Any signal can be expressed as a linear combination of suitably weighed and
shifted impulses. In this case, the weights are nothing but the signal val-
ues themselves. While self-evident, this formula will reappear in a variety of
fundamental derivations since it captures the “inner structure” of a discrete-
time signal.

2.1.6 Energy and Power

We define the energy of a discrete-time signal as

o0
Ex=Ilxlf= Y |xlnl] (2.19)
n=-00

(where the squared-norm notation will be clearer after the next Chapter).
This definition is consistent with the idea that, if the values of the sequence
represent a time-varying voltage, the above sum would express the total en-
ergy (in joules) dissipated over a 1Q-resistor. Obviously, the energy is fi-
nite only if the above sum converges, i.e. if the sequence x[n] is square-
summable. A signal with this property is sometimes referred to as a finite-
energy signal. For a simple example of the converse, note that a periodic
signal which is not identically zero is not square-summable.

®We will see later that a more “correct” approximation to differentiation is given by a filter
H(e/®)= jw. For most applications, however, the first-order difference will suffice.
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We define the power of a signal as the usual ratio of energy over time,
taking the limit over the number of samples considered:

1 N-1 )
Px=1\l]iirgoﬁ;}x[n]} (2.20)

Clearly, signals whose energy is finite, have zero total power (i.e. their en-
ergy dilutes to zero over an infinite time duration). Exponential sequences
which are not decaying (i.e. those for which |a| > 1 in (2.7)) possess infinite
power (which is consistent with the fact that they describe an unstable be-
havior). Note, however, that many signals whose energy is infinite do have
finite power and, in particular, periodic signals (such as sinusoids and com-
binations thereof). Due to their periodic nature, however, the above limit
is undetermined; we therefore define their power to be simply the average
energy over a period. Assuming that the period is N samples, we have

N-1

Px:%2|x[n])2 2.21)

n=0

2.2 Classes of Discrete-Time Signals

The examples of discrete-time signals in (2.1) and (2.2) are two-sided, infi-
nite sequences. Of course, in the practice of signal processing, it is impos-
sible to deal with infinite quantities of data: for a processing algorithm to
execute in a finite amount of time and to use a finite amount of storage, the
input must be of finite length; even for algorithms that operate on the fly,
i.e. algorithms that produce an output sample for each new input sample,
an implicit limitation on the input data size is imposed by the necessar-
ily limited life span of the processing device.”) This limitation was all too
apparent in our attempts to plot infinite sequences as shown in Figure 2.1
or 2.2: what the diagrams show, in fact, is just a meaningful and representa-
tive portion of the signals; as for the rest, the analytical description remains
the only reference. When a discrete-time signal admits no closed-form rep-
resentation, as is basically always the case with real-world signals, its finite
time support arises naturally because of the finite time spent recording the
signal: every piece of music has a beginning and an end, and so did every
phone conversation. In the case of the sequence representing the Dow Jones
index, for instance, we basically cheated since the index did not even exist
for years before 1884, and its value tomorrow is certainly not known — so that

@Or, in the extreme limit, of the supervising engineer ...
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the signal is not really a sequence, although it can be arbitrarily extended to
one. More importantly (and more often), the finiteness of a discrete-time
signal is explicitly imposed by design since we are interested in concentrat-
ing our processing efforts on a small portion of an otherwise longer signal; in
a speech recognition system, for instance, the practice is to cut up a speech
signal into small segments and try to identify the phonemes associated to
each one of them.® A special case is that of periodic signals; even though
these are bona-fide infinite sequences, it is clear that all information about
them is contained in just one period. By describing one period (graphically
or otherwise), we are, in fact, providing a full description of the sequence.
The complete taxonomy of the discrete-time signals used in the book is the
subject of the next Sections and is summarized in Table 2.1.

2.2.1 Finite-Length Signals

As we just mentioned, a finite-length discrete-time signal of length N is
just a collection of N complex values. To introduce a point that will reappear
throughout the book, a finite-length signal of length N is entirely equivalent
to a vector in CN. This equivalence is of immense import since all the tools
of linear algebra become readily available for describing and manipulating
finite-length signals. We can represent an N-point finite-length signal using
the standard vector notation

X=[XO X1 ... xN_l]T

Note the transpose operator, which declares x as a column vector; this is
the customary practice in the case of complex-valued vectors. Alternatively,
we can (and often will) use a notation that mimics the one used for proper
sequences:

x[n], n=0,...,N—1

Here we must remember that, although we use the notation x[n], x[n] is
not defined for values outside its support, i.e. for n < 0 or for n > N. Note
that we can always obtain a finite-length signal from an infinite sequence
by simply dropping the sequence values outside the indices of interest. Vec-
tor and sequence notations are equivalent and will be used interchangeably
according to convenience; in general, the vector notation is useful when we
want to stress the algorithmic or geometric nature of certain signal process-
ing operations. The sequence notation is useful in stressing the algebraic
structure of signal processing.

®Note that, in the end, phonemes are pasted together into words and words into sen-
tences; therefore, for a complete speech recognition system, long-range dependencies
become important again.
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Finite-length signals are extremely convenient entities: their energy is
always finite and, as a consequence, no stability issues arise in processing. From
the computational point of view, they are not only a necessity but often the
cornerstone of very efficient algorithmic design (as we will see, for instance,
in the case of the FFT); one could say that all “practical” signal processing
lives in CV. It would be extremely awkward, however, to develop the whole
theory of signal processing only in terms of finite-length signals; the asymp-
totic behavior of algorithms and transformations for infinite sequences is
also extremely valuable since a stability result proven for a general sequence
will hold for all finite-length signals too. Furthermore, the notational flexi-
bility which infinite sequences derive from their function-like definition is
extremely practical from the point of view of the notation. We can immedi-
ately recognize and understand the expression x[n — k] as a k-point shift of
a sequence x[n]; but, in the case of finite-support signals, how are we to de-
fine such a shift? We would have to explicitly take into account the finiteness
of the signal and the associated “border effects”, i.e. the behavior of opera-
tions at the edges of the signal. For this reason, in most derivations which
involve finite-length signal, these signals will be embedded into proper se-
quences, as we will see shortly.

2.2.2 Infinite-Length Signals

Aperiodic Signals. The most general type of discrete-time signal is rep-
resented by a generic infinite complex sequence. Although, as previously
mentioned, they lie beyond our processing and storage capabilities, they
are invaluably useful as a generalization in the limit. As such, they must
be handled with some care when it comes to their properties. We will see
shortly that two of the most important properties of infinite sequences con-

X

x[n] =..., XN-2, XN-1, X0,X1,X2,..., XN-2,XN-1, X0, X1, ...
l—=n=0
f[f’l - 1] =...y XN-3, XN-2, XN-1,X0,X1,X2,..., XN-2, XN—-1, X0, ..

x

Figure 2.6 Equivalence between a right shift by one of a periodized signal and the
circular shift of the original signal. x and x’ are the length-V original signal and its
right circular shift by one, respectively.
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cern their summability: this can take the form of either absolute summa-
bility (stronger condition) or square summability (weaker condition, corre-
sponding to finite energy).

Periodic Signals. A periodic sequence with period N is one for which
%[n]=x[n+kN], kez (2.22)

The tilde notation %[n] will be used whenever we need to explicitly stress
a periodic behavior. Clearly an N-periodic sequence is completely defined
by its N values over a period; that is, a periodic sequence “carries no more
information” than a finite-length signal of length N.

Periodic Extensions. Periodic sequences are infinite in length, and yet
their information is contained within a finite number of samples. In this
sense, periodic sequences represent a first bridge between finite-length sig-
nals and infinite sequences. In order to “embed” a finite-length signal x[r],
n=0,...,N —1into a sequence, we can take its periodized version:

X[n]=x[n mod NJ, nez (2.23)

this is called the periodic extension of the finite length signal x[n]. This type
of extension is the “natural” one in many contexts, for reasons which will
be apparent later when we study the frequency-domain representation of
discrete-time signals. Note that now an arbitrary shift of the periodic se-
quence corresponds to the periodization of a circular shift of the original
finite-length signal. A circular shift by k € Z is easily visualized by imagining
a shift register; if we are shifting towards the right (k > 0), the values which
pop out of the rightmost end of the shift register are pushed back in at the
other end.® The relationship between the circular shift of a finite-length
signal and the linear shift of its periodic extension is depicted in Figure 2.6.
Finally, the energy of a periodic extension becomes infinite, while its power
is simply the energy of the finite-length original signal scaled by 1/N.

Finite-Support Signals. An infinite discrete-time sequence x[n] is said to
have finite support if its values are zero for all indices outside of an interval;
that is, there exist N and M € Z such that

x[n]=0 forn<Mandn>M+N -1

Note that, although ¥[#] is an infinite sequence, the knowledge of M and of
the N nonzero values of the sequence completely specifies the entire signal.

©®For example, if x=[1 2 34 5], a right circular shift by 2 yieldsx=[451 2 3].
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This suggests another approach to embedding a finite-length signal x[n],
n=0,...,N—1, into a sequence, i.e.

B {x[n] ifo<n<N-1
%[n] = nez (2.24)

0 otherwise

where we have chosen M = 0 (but any other choice of M could be used).
Note that, here, in contrast to the periodic extension of x[n], we are ac-
tually adding arbitrary information in the form of the zero values outside
of the support interval. This is not without consequences, as we will see
in the following Chapters. In general, we will use the bar notation x[n] for
sequences defined as the finite support extension of a finite-length signal.
Note that, now, the shift of the finite-support extension gives rise to a zero-
padded shift of the signal locations between M and M + N —1; the dynamics
of the shift are shown in Figure 2.7.

X

X‘[n] = Or Or X0, X1,X2,..» XN-2,XN-1, O) 0) 0) 0) oo
I—n=0
x[n—-1]=...,0,0, 0,x9,X1,X2,...,XN-3,XN—2, XN-1, 0, O, ...

X/

Figure 2.7 Relationship between the right shift by one of a finite-support exten-
sion and the zero padded shift of the original signal. x and x’ are the length-N
original signal and its zero-padded shift by one, respectively.

Table 2.1 Basic discrete-time signal types.

Signal Type Notation Energy Power
x[n], n=0,1,...,N—1 = 2
Finite-Length x, xeCN ;}x[n]‘ undef.
Infinite-Length x[n], nez eq. (2.19) eq. (2.20)
. X[n], neZ
N-Periodic £[n]=£[n+kN] 00 eq. (2.21)
x[n], nez M+N-1
Finite-Support X[n]#£0 for Z |x[n]? 0
M<n<M+N-1 n=M
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Example 2.1: Discrete-time in the Far West

The fact that the “fastest” digital frequency is 27t can be readily appreciated
in old western movies. In classic scenarios there is always a sequence show-
ing a stagecoach leaving town. We can see the spoked wagon wheels starting
to turn forward faster and faster, then stop and then starting to turn back-
wards. In fact, each frame in the movie is a snapshot of a spinning disk with
increasing angular velocity. The filming process therefore transforms the
wheel’s movement into a sequence of discrete-time positions depicting a
circular motion with increasing frequency. When the speed of the wheel is
such that the time between frames covers a full revolution, the wheel ap-
pears to be stationary: this corresponds to the fact that the maximum digi-
tal frequency w = 2 is undistinguishable from the slowest frequency w = 0.
As the speed of the real wheel increases further, the wheel on film starts to
move backwards, which corresponds to a negative digital frequency. This is
because a displacement of 27 4+ a between successive frames is interpreted
by the brain as a negative displacement of a: our intuition always privileges
the most economical explanation of natural phenomena.

Example 2.2: Building periodic signals
Given a discrete-time signal x[n] and an integer N > 0 we can always for-
mally write

o0

lnl= > xln—kN]
k=—00
The signal j[n], if it exists, is an N-periodic sequence. The periodic signal
7 [n] is “manufactured” by superimposing infinite copies of the original sig-
nal x[n] spaced N samples apart. We can distinguish three cases:

(a) If x[n] is finite-support and N is bigger than the size of the support,
then the copies in the sum do not overlap; in the limit, if N is exactly
equal to the size of the support then j[n] corresponds to the periodic
extension of x[n] considered as a finite-length signal.

(b) If x[n] is finite-support and N is smaller than the size of the support
then the copies in the sum do overlap; for each n, the value of j[n] is
be the sum of at most a finite number of terms.

(c) If x[n] has infinite support, then each value of [n] is be the sum of an
infinite number of terms. Existence of j[n] depends on the properties
of x[n].
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The first two cases are illustrated in Figure 2.8. In practice, the periodization
of short sequences is an effective method to synthesize the sound of string
instruments such as a guitar or a piano; used in conjunction with simple
filters, the technique is known as the Karplus-Strong algorithm.

As an example of the last type, take for instance the signal x[n] = a " u[n].
The periodization formula leads to

00 [n/N)
yln]= Z a "Ny n—kN]= Z o~ (1=kN)
k=—00 k=—00

since u[n — kN]=0 for k > |n/N|. Now write n = mN + i with m = |n/N|
and i =n mod N. We have

m o0
j}[n] — Z a—(m—k)N—i — a—i Za—hN
h=0

k=—00

which exists and is finite for |a| > 1; for these values of & we have

a—(n mod N)

ylnl= = (2.25)

which is indeed N-periodic. An example is shown in Figure 2.9.

—60 —40 —20 0 20 40 60

—60 —40 -20 0 20 40 60

Figure 2.9 Periodization of x[n] = 1.17" u[n] with N = 40; original signal (top
panel) and periodized version (bottom panel).
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Further Reading

For more discussion on discrete-time signals, see Discrete-Time Signal Pro-
cessing, by A. V. Oppenheim and R. W. Schafer (Prentice-Hall, last edition in
1999), in particular Chapter 2.

Other books of interest include: B. Porat, A Course in Digital Signal Pro-
cessing (Wiley, 1997) and R. L. Allen and D. W. Mills’ Signal Analysis (IEEE
Press, 2004).

Exercises

Exercise 2.1: Review of complex numbers.

n

11 ~
(a) Lets[n] :=2—+]3—n.Computenz:;s[n].

H n
(b) Same question with s[n]:= (]5) .

(c) Characterize the set of complex numbers satisfying z* =z 1.

(d) Find 3 complex numbers {zy, z1, z2} which satisfy z? =1,i=0,1,2.

[0
(e) What is the following infinite product l_[ el™/2"2

n=1

Exercise 2.2: Periodic signals. For each of the following discrete-time
signals, state whether the signal is periodic and, if so, specify the period:

(a) x[n]:ef%

(b) x[n]=cos(n)

(¢c) x[n]=4/cos (ng)

+00
(d x[n]= Z y[n —100k], with y[n] absolutely summable.

k=—00



Chapter 3

Signals and Hilbert Spaces

In the 17th century, algebra and geometry started to interact in a fruitful syn-
ergy which continues to the present day. Descartes’s original idea of trans-
lating geometric constructs into algebraic form spurred a new line of attack
in mathematics; soon, a series of astonishing results was produced for a
number of problems which had long defied geometrical solutions (such as,
famously, the trisection of the angle). It also spearheaded the notion of vec-
tor space, in which a geometrical point could be represented as an n-tuple
of coordinates; this, in turn, readily evolved into the theory of linear alge-
bra. Later, the concept proved useful in the opposite direction: many al-
gebraic problems could benefit from our innate geometrical intuition once
they were cast in vector form; from the easy three-dimensional visualiza-
tion of concepts such as distance and orthogonality, more complex alge-
braic constructs could be brought within the realm of intuition. The fi-
nal leap of imagination came with the realization that the concept of vec-
tor space could be applied to much more abstract entities such as infinite-
dimensional objects and functions. In so doing, however, spatial intuition
could be of limited help and for this reason, the notion of vector space had
to be formalized in much more rigorous terms; we will see that the defini-
tion of Hilbert space is one such formalization.

Most of the signal processing theory which in this book can be usefully
cast in terms of vector notation and the advantages of this approach are ex-
actly what we have just delineated. Firstly of all, all the standard machinery
of linear algebra becomes immediately available and applicable; this greatly
simplifies the formalism used in the mathematical proofs which will follow
and, at the same time, it fosters a good intuition with respect to the under-
lying principles which are being put in place. Furthermore, the vector nota-
tion creates a frame of thought which seamlessly links the more abstract re-
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sults involving infinite sequences to the algorithmic reality involving finite-
length signals. Finally, on the practical side, vector notation is the standard
paradigm for numerical analysis packages such as Matlab; signal processing
algorithms expressed in vector notation translate to working code with very
little effort.

In the previous Chapter, we established the basic notation for the differ-
ent classes of discrete-time signals which we will encounter time and again
in the rest of the book and we hinted at the fact that a tight correspondence
can be established between the concept of signal and that of vector space.
In this Chapter, we pursue this link further, firstly by reviewing the familiar
Euclidean space in finite dimensions and then by extending the concept of
vector space to infinite-dimensional Hilbert spaces.

3.1 Euclidean Geometry: a Review

Euclidean geometry is a straightforward formalization of our spatial sen-
sory experience; hence its cornerstone role in developing a basic intuition
for vector spaces. Everybody is (or should be) familiar with Euclidean geom-
etry and the natural “physical” spaces like R? (the plane) and R3 (the three-
dimensional space). The notion of distance is clear; orthogonality is intu-
itive and maps to the idea of a “right angle”. Even a more abstract concept
such as that of basis is quite easy to contemplate (the standard coordinate
concepts of latitude, longitude and height, which correspond to the three
orthogonal axes in R3). Unfortunately, immediate spatial intuition fails us
for higher dimensions (i.e. for RNV with N > 3), yet the basic concepts intro-
duced for R3? generalize easily to RN so that it is easier to state such con-
cepts for the higher-dimensional case and specialize them with examples
for N =2 or N = 3. These notions, ultimately, will be generalized even fur-
ther to more abstract types of vector spaces. For the moment, let us review
the properties of RV, the N-dimensional Euclidean space.

Vectors and Notation. A point in R¥ is specified by an N-tuple of coor-
dinates:(V

X0

X1 T
X= ) =[xo x1 ... xn—1]

XN-1

) N-dimensional vectors are by default column vectors.
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where x; € R, i =0,1,...,N — 1. We call this set of coordinates a vector and
the N-tuple will be denoted synthetically by the symbol x; coordinates are
usually expressed with respect to a “standard” orthonormal basis.). The
vector0=[0 0 ... 0]7,i.e.thenullvector, is considered the origin of the
coordinate system.

The generic n-th element in vector x is indicated by the subscript x,,. In
the following we will often consider a set of M arbitrarily chosen vectors in
RN and this set will be indicated by the notation {x(¥)} ,_, , .. Eachvector
in the set is indexed by the superscript -¥). The n-th element of the k-th

vector in the set is indicated by the notation x(nk)

Inner Product. The inner product between two vectors x,y € RY is defined
as

N-1
(K Y) =Y xn¥n 3.1)
n=0

We say that x and y are orthogonal, or x | y, when their inner product is
Zero:

xly <= (xy)=0 (3.2
Norm. The norm of a vector is defined in terms of the inner product as

x> = (3.3)

It is easy to visualize geometrically that the norm of a vector corresponds
to its length, i.e. to the distance between the origin and the point identified
by the vector’s coordinates. A remarkable property linking the inner prod-
uct and the norm is the Cauchy-Schwarz inequality (the proof of which is
nontrivial); given x,y € RN we can state that

|6, 9] < lIxll2 11yll2

Distance. The concept of norm is used to introduce the notion of Eu-
clidean distance between two vectors x and y:

N-1
Z(xn - J’n)z
n=0

@The concept of basis will be defined more precisely later on; for the time being, consider
a standard set of orthogonal axes.

dx,y)=Ix-yll.= (3.4)
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y y Z=X+Yy

X X

Figure 3.1 Elementary properties of vectors in R?: orthogonality of two vectors x
and y (left); difference vector x—y (middle); sum of two orthogonal vectors z =x+y,
also known as Pythagorean theorem (right).

From this, we can easily derive the Pythagorean theorem for N dimen-
sions: if two vectors are orthogonal, x | y, and we consider the sum vector
z =x+Yy, we have

15 = lIxl5 +Iyil5 (3.5)

The above properties are graphically shown in Figure 3.1 for R2.

Bases. Consider aset of M arbitrarily chosen vectors in RV: {x(K)};_o /1.
Given such a set, a key question is that of completeness: can any vector
in RN be written as a linear combination of vectors from the set? In other
words, we ask ourselves whether, for any z € RV, we can find a set of M
coefficients a; € R such that z can be expressed as

M-1
Z= Z akx(k) (3.6)
k=0

Clearly, M needs to be greater or equal to N, but what conditions does a set
of vectors {x(¥)};_o_r—1 need to satisfy so that (3.6) holds for any z € RN?
There needs to be a set of M vectors that span RY, and it can be shown that
this is equivalent to saying that the set must contain at least N linearly inde-
pendent vectors. In turn, N vectors {y\¥)};__ 1 are linearly independent
if the equation

N-1
D By =0 3.7)
k=0

is satisfied only when all the f;’s are zero. A set of N linearly independent
vectors for RY is called a basis and, amongst bases, the ones with mutually
orthogonal vectors of norm equal to one are called orthonormal bases. For
an orthonormal basis {y'*)} we therefore have

1 ifk=h

(y0),y") = { 3.8)

0 otherwise

Figure 3.2 reviews the above concepts in low dimensions.
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x®

x(© x(1)

x@

Figure 3.2 Linear independence and bases: x, x(1) and x/) are coplanar in R® and,
therefore, they do not form a basis; conversely, x® and any two of {x(©,x(!),x®} are
linearly independent.

The standard orthonormal basis for RY is the canonical basis {6©} k=0 N—1
with
1 ifn=k

6 =5[n—k]=
0 otherwise

The orthonormality of such a set is immediately apparent. Another impor-
tant orthonormal basis for C¥ is the normalized Fourier basis {w*)};_o_n_1
for which

1 - 21
W(nk)= e—]ﬁnk

VN

The orthonormality of the basis will be proved in the next Chapter.

3.2 From Vector Spaces to Hilbert Spaces

The purpose of the previous Section was to briefly review the elementary
notions and spatial intuitions of Euclidean geometry. A thorough study of
vectors in RN and CV is the subject of linear algebra; yet, the idea of vectors,
orthogonality and bases is much more general, the basic ingredients being
an inner product and the use of a square norm as in (3.3).
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While the analogy between vectors in CV and length-N signal is read-
ily apparent, the question now hinges on how we are to proceed in order to
generalize the above concepts to the class of infinite sequences. Intuitively,
for instance, we can let N grow to infinity and obtain C* as the Euclidean
space for infinite sequences; in this case, however, much care must be ex-
ercised with expressions such as (3.1) and (3.3) which can diverge for se-
quences as simple as x[n] = 1 for all . In fact, the proper generalization of
CN to an infinite number of dimensions is in the form of a particular vector
space called Hilbert space; the structure of this kind of vector space imposes
a set of constraints on its elements so that divergence problems, such as
the one we just mentioned, no longer bother us. When we embed infinite
sequences into a Hilbert space, these constraints translate to the condition
that the corresponding signals have finite energy — which is a mild and rea-
sonable requirement.

Finally, it is important to remember that the notion of Hilbert space is
applicable to much more general vector spaces than CV; for instance, we
can easily consider spaces of functions over an interval or over the real line.
This generality is actually the cornerstone of a branch of mathematics called
functional analysis. While we will not follow in great depth these kinds of
generalizations, we will certainly point out a few of them along the way.
The space of square integrable functions, for instance, will turn out to be
a marvelous tool a few Chapters from now when, finally, the link between
continuous—and discrete—time signals will be explored in detail.

3.2.1 The Recipe for Hilbert Space

A word of caution: we are now starting to operate in a world of complete
abstraction. Here a vector is an entity per se and, while analogies and ex-
amples in terms of Euclidean geometry can be useful visually, they are, by
no means, exhaustive. In other words: vectors are no longer just N-tuples
of numbers; they can be anything. This said, a Hilbert space can be defined
in incremental steps starting from a general notion of vector space and by
supplementing this space with two additional features: the existence of an
inner product and the property of completeness.

Vector Space. Consider a set of vectors V and a set of scalars S (which
can be either R or C for our purposes). A vector space H(V,S) is completely
defined by the existence of a vector addition operation and a scalar multi-
plication operation which satisfy the following properties for any x,y,z, € V
andanya, B €S:
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o Addition is commutative:
X+y=y+x 3.9)
¢ Addition is associative:
x+y)+z=x+(y+2) (3.10)

e Scalar multiplication is distributive:

ax+y)=ax+ay (3.11)

(a+B)x=o0ax+ Bx (3.12)

a(fx)=(af)x (3.13)

e There exists a null vector 0 in V which is the additive identity so that
VxeV:

Xx+0=04+x=x (3.14)

e Vxe€ V there exists in V an additive inverse —x such that
X+ (—x)=(—x)+x=0 (3.15)

o There exists an identity element “1” for scalar multiplication so that
VxeV:

1. x=x-1=x (3.16)

Inner Product Space. What we have so far is the simplest type of vector
space; the next ingredient which we consider is the inner product which is
essential to build a notion of distance between elements in a vector space.
A vector space with an inner product is called an inner product space. An
inner product for H(V,S) is a function from V x V to S which satisfies the
following properties for any x,y,z, € V:

o Itis distributive with respect to vector addition:

x+y,z)=(x,2z)+(y,z) 3.17)
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e It possesses the scaling property with respect to scalar multiplication®:
{x, ay) =a{xy) (3.18)
(ax,y) = a*(x,y) (3.19)

¢ Itis commutative within complex conjugation:
xy) =(y.x) (3.20)
e The self-product is positive:

(x,x) >0 3.21)
x,x)=0 < x=0. (3.22)

From this definition of the inner product, a series of additional definitions
and properties can be derived: first of all, orthogonality between two vectors
is defined with respect to the inner product, and we say that the non-zero
vectors x and y are orthogonal, or x 1 y, if and only if

x,y)=0 (3.23)

From the definition of an inner product, we can define the norm of a vector
as (we will omit from now on the subscript 2 from the norm symbol):

x| = (x,%)"/2 (3.24)
In turn, the norm satisfies the Cauchy-Schwarz inequality :
|6, )| < lIx- 1yl (3.25)

with strict equality if and only if x = ay. The norm also satisfies the triangle
inequality:

lIx +yll < [IxI| + [yl (3.26)

with strict equality if and only if x = ay and @ € R*. For orthogonal vectors,
the triangle inequality becomes the famous Pythagorean theorem:

lx+ ylI* = [IxII* + llyl[* forx Ly (3.27)

Hilbert Space. A vector space H(V,S) equipped with an inner product
is called an inner product space. To obtain a Hilbert space, we need com-

®Note that in our notation, the left operand is conjugated.
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pleteness. This is a slightly more technical notion, which essentially im-
plies that convergent sequences of vectors in V have a limit that is also in
V. To gain intuition, think of the set of rational numbers Q versus the set of
real numbers R. The set of rational numbers is incomplete, because there
are convergent sequences in QQ which converge to irrational numbers. The
set of real numbers contains these irrational numbers, and is in that sense
the completion of Q. Completeness is usually hard to prove in the case of
infinite-dimensional spaces; in the following it will be tacitly assumed and
the interested reader can easily find the relevant proofs in advanced analysis
textbooks. Finally, we will also only consider separable Hilbert spaces, which
are the ones that admit orthonormal bases.

3.2.2 Examples of Hilbert Spaces

Finite Euclidean Spaces. The vector space CV, with the “natural” defi-
nition for the sum of two vectors z=x+y as

Zn=Xn+Yn (3.28)

and the definition of the inner product as

N-1
(K y) =Y xhyn (3.29)
n=0

is a Hilbert space.

Polynomial Functions. An example of “functional” Hilbert space is the
vector space Py ([0,1]) of polynomial functions on the interval [0,1] with
maximum degree N. It is a good exercise to show that Py, ([0, 1]) is not com-
plete; consider for instance the sequence of polynomials

pal0)=2
k=0
This series converges as p,,(x) — e* € Py ([0,1]).

Square Summable Functions. Another interesting example of func-
tional Hilbert space is the space of square integrable functions over a finite
interval. For instance, L, ([—7,7]) is the space of real or complex functions
on the interval [—7, t] which have a finite norm. The inner product over
Ly ([—m, 7)) is defined as

71'

(fLey=1 [(gr)at (3.30)

-7
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so that the norm of f(#)is

v

e f ()| de (3.31)

For f(t) to belong to L ([—,7t]) it must be || f]| < co.

3.2.3 Inner Products and Distances

The inner product is a fundamental tool in a vector space since it allows us
to introduce a notion of distance between vectors. The key intuition about
this is a typical instance in which a geometric construct helps us to gener-
alize a basic idea to much more abstract scenarios. Indeed, take the simple
Euclidean space RY and a given vector x; for any vector y € RN the inner
product (x,y) is the measure of the orthogonal projection of y over x. We
know that the orthogonal projection defines the point on x which is closest
to y and therefore this indicates how well we can approximate y by a simple
scaling of x. To illustrate this, it should be noted that

(x,y) =Ix|[[lyllcos 6

where 0 is the angle between the two vectors (you can work out the expres-
sion in R? to easily convince yourself of this; the result generalizes to any
other dimension). Clearly, if the vectors are orthogonal, the cosine is zero
and no approximation is possible. Since the inner product is dependent on
the angular separation between the vectors, it represents a first rough mea-
sure of similarity between x and y; in broad terms, it provides a measure of
the difference in shape between vectors.

In the context of signal processing, this is particularly relevant since most
of the times, we are interested in the difference in shape” between signals.
As we have said before, discrete-time signals are vectors; the computation of
their inner product will assume different names according to the processing
context in which we find ourselves: it will be called filtering, when we are
trying to approximate or modify a signal or it will be called correlation when
we are trying to detect one particular signal amongst many. Yet, in all cases,
it will still be an inner product, i.e. a qualitative measure of similarity be-
tween vectors. In particular, the concept of orthogonality between signals
implies that the signals are perfectly distinguishable or, in other words, that
their shape is completely different.

The need for a quantitative measure of similarity in some applications
calls for the introduction of the Euclidean distance, which is derived from
the inner product as

dxy)=x-yx-y/2=|x—yl (3.32)
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In particular, for CV the Euclidean distance is defined by the expression:

(3.33)

whereas for L, ([—7, 7]) we have

d(x,y)= f x() -y ()| dt (3.34)

In the practice of signal processing, the Euclidean distance is referred to as
the root mean square error;® this is a global, quantitative goodness-of-fit
measure when trying to approximate signal y with x.

Incidentally, there are other types of distance measures which do not
rely on a notion of inner product; for example in CV we could define

dx,y)= JJax 1Xp — Ynl (3.35)

This distance is based on the supremum norm and is usually indicated by
|[x—Yylloo; however, it can be shown that there is no inner product from which
this norm can be derived and therefore no Hilbert space can be constructed
where || - || is the natural norm. Nonetheless, this norm will reappear later,
in the context of optimal filter design.

3.3 Subspaces, Bases, Projections

Now that we have defined the properties of Hilbert space, it is only nat-
ural to start looking at the consequent inner structure of such a space. The
best way to do so is by introducing the concept of basis. You can think of
a basis as the “skeleton” of a vector space, i.e. a structure which holds ev-
erything together; yet, this skeleton is flexible and we can twist it, stretch
it and rotate it in order to highlight some particular structure of the space
and facilitate access to particular information that we may be seeking. All
this is accomplished by a linear transformation called a change of basis; to
anticipate the topic of the next Chapter, we will see shortly that the Fourier
transform is an instance of basis change.

Sometimes, we are interested in exploring in more detail a specific sub-
set of a given vector space; this is accomplished via the concept of subspace.
A subspace is, as the name implies, a restricted region of the global space,

@Almost always, the square distance is considered instead; its name is then the mean
square error, or MSE.
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with the additional property that it is closed under the usual vector opera-
tions. This implies that, once in a subspace, we can operate freely without
ever leaving its confines; just like a full-fledged space, a subspace has its own
skeleton (i.e. the basis) and, again, we can exploit the properties of this basis
to highlight the features that interest us.

3.3.1 Definitions

Assume H(V,S)is a Hilbert space, with V a vector space and S a set of scalars
(.e. C).

Subspace. A subspace of V is defined as a subset P C V that satisfies the
following properties:

o Closure under addition, i.e.

x€P and yeP = x+yeP (3.36)
o Closure under scalar multiplication, i.e.

xeP and aeS = axeP 3.37)

Clearly, V is a subspace of itself.

Span. Given an arbitrary set of M vectors W = {x™} ., |, the span
of these vectors is defined as

M-1
span(W)= {Z amx(m)}, am €S (3.38)

m=0

i.e. the span of W is the set of all possible linear combinations of the vectors
in W. The set of vectors W is called linearly independent if the following
holds:

M-1
Zamx(m)=0<=>am=0 form=0,1,...,M—1 (3.39)

m=0

for that subspaceif
e The set W is linearly independent.

e Its span covers P, i.e. span(W)=P.
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The last statement affirms that any y € P can be written as a linear combi-

.....

such that
K-1
y= a® (3.40)
k=0

which is equivalently expressed by saying that the set W is completein P.

Orthogonal/Orthonormal Basis. An orthonormal basis for a subspace
(xD,xy = §[i — j] 0<i,j<K (3.41)

which means orthogonality across vectors and unit norm. Sometimes, the
set of vectors can be orthogonal but not normal (i.e. the norm of the vec-
tors is not unitary). This is not a problem provided that we remember to
include the appropriate normalization factors in the analysis and/or syn-
thesis formulas. Alternatively, a linearly idependent set of vectors can be
orthonormalized via the Gramm-Schmidt procedure, which can be found
in any linear algebra textbook.

Among all bases, orthonormal bases are the most “beautiful” in a way
because of their structure and their properties. One of the most important
properties for finite-dimensional spaces is the following:

o Asetof N orthogonal vectors in an N-dimensional subspace is a basis
for the subspace.

In other words, in finite dimensions, once we find a full set of orthogonal
vectors, we are sure that the set spans the space.

3.3.2 Properties of Orthonormal Bases

Let W= {x(0},_ |, bean orthonormal basis for a (sub)space P. Then
the following properties (all of which are easily verified) hold:

Analysis Formula. The coefficients in the linear combination (3.40) are
obtained simply as

ap = (xFy) (3.42)

The coefficients {ay} are called the Fourier coefficients® of the orthonormal
expansion of y with respect to the basis W and (3.42) is called the Fourier
analysis formula; conversely, Equation (3.40) is called the synthesis formula.

®Fourier coefficients often refer to the particular case of Fourier series. However, the term
generally refers to coefficients in any orthonormal basis.



50 Subspaces, Bases, Projections

Parseval’s Identity For an orthonormal basis, there is a norm conserva-
tion property given by Parseval’s identity:

K-1
yl2 =" (x®,y) [ (3.43)
k=0

For physical quantities, the norm is dimensionally equivalent to a measure
of energy; accordingly, Parseval’s identity is also known as the energy conser-
vation formula.

Bessel’s Inequality. The generalization of Parseval’s equality is Bessel’s in-
equality. In our subspace P, consider a set of L orthonormal vectors G C P
(a set which is not necessarily a basis since it may be L < K), with G =
{8}, ..;_; then the norm of any vector y € P is lower bounded as :

L-1
2> (g (3.44)
=0

and the lower bound is reached for all y if and only if the system G is com-
plete, that is, if it is an orthonormal basis for P.

Best Approximations. Assume P is a subspace of V; if we try to approx-
imate a vector y € V by a linear combination of basis vectors from the sub-
space P, then we are led to the concepts of least squares approximations and
orthogonal projections. First of all, we define the best linear approximation
y € P of a general vector y € V to be the approximation which minimizes the
norm |ly—¥||. Such approximation is easily obtained by projecting y onto
an orthonormal basis for P, as shown in Figure 3.3. With W as our usual
orthonormal basis for P, the projection is given by

=

y= <x(k),y>x(k) (3.45)
0

=
Il

Define the approximation error as the vector d = y—V; it can be easily shown
that:

e The error is orthogonal to the approximation, i.e. d L ¥.

e The approximation minimizes the error square norm, i.e.

K-—1
inllv— o, = 5) o\ok)
argmin ly — iz ;(x Ly)X (3.46)
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This approximation with an orthonormal basis has a key property: it can be
successively refined. Assume you have the approximation with the first m
terms of the orthonormal basis:

m—1
= (xOyx® (3.47)
k=0
and now you want to compute the (m +1)-term approximation. This is sim-
ply given by
Y1 =Fom + (X, y)x™) (3.48)

While this seems obvious, it is actually a small miracle, since it does not hold
for more general, non-orthonormal bases.

x@

x(1)

Figure 3.3 Orthogonal projection of the vector y onto the subspace W spanned
by {x( x(1)}, leading to the approximation y. This approximation minimizes the
square norm |y — y||; among all approximations belonging to W.

3.3.3 Examples of Bases

Considering the examples of 3.2.2, we have the following:

Finite Euclidean Spaces. For the simplest case of Hilbert spaces, namely
CN, orthonormal bases are also the most intuitive since they contain exactly
N mutually orthogonal vectors of unit norm. The classical example is the
canonical basis {6}, _, ,_, with

6 =5[n—k (3.49)
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but we will soon study more interesting bases such as the Fourier basis {w(%)},
for which

wib) = g%k
In CV, the analysis and synthesis formulas (3.42) and (3.40) take a particu-
larly neat form. For any set {x(¥)} of N orthonormal vectors one can indeed
arrange the conjugates of the basis vectors® as the successive rows of an
N x N square matrix M so that each matrix element is the conjugate of the
n-th element of the m-th basis vector:

*
M, = (X(nm))

M s called a change of basis matrix. Given a vectory, the set of expansion co-
efficient {ay }r—o..n—1 can now be written itself as a vector” a@ € CV. There-
fore, we can rewrite the analysis formula (3.42) in matrix-vector form and
we have

a= My (3.50)

The reconstruction formula (3.40) for y from the expansion coefficients, be-
comes, in turn,

y=M"q (3.51)

where the superscript denotes the Hermitian transpose (transposition and
conjugation of the matrix). The previous equation shows that y is a linear
combination of the columns of M, which, in turn, are of course the vectors
{x(0)}. The orthogonality relation (3.49) takes the following forms:

MIM =1 (3.52)
MM =1 (3.53)

since left inverse equals right inverse for square matrices; this implies that
M has orthonormal rows as well as orthonormal columns.

Polynomial Functions. A basis for Py([0,1]) is {x*},_,_,. This basis,
however, is not an orthonormal basis. It can be transformed to an orthonor-
mal basis by a standard Gramm-Schmidt procedure; the basis vector thus
obtained are called Legendre polynomials.

©®QOther definitions may build M by stacking the non-conjugated basis vectors instead; the
procedure is however entirely equivalent. Here we choose this definition in order to be
consistent with the usual derivation of the Discrete Fourier Transform, which we will
see in the next Chapter.

(MThis isomorphism is rather special and at the foundation of Linear Algebra. If the orig-
inal vector space V is not CV, the analysis formula will always provide us with a vector
of complex values, but this vector will not be in V.
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Square Summable Functions. Anorthonormalbasis set for L, ([—7, 7t])
is the set {(1/v2m)e/"*} _,. This is actually the classic Fourier basis for
functions on an interval. Please note that, here, as opposed to the previous
examples, the number of basis vectors is actually infinite. The orthogonal-
ity of these basis vectors is easily verifiable; their completeness, however,
is rather hard to prove and this, unfortunately, is very much the rule for all
non-trivial, infinite-dimensional basis sets.

3.4 Signal Spaces Revisited

We are now in a position to formalize our intuitions so far, with respect to
the equivalence between discrete-time signals and vector spaces, with a par-
ticularization for the three main classes of signals that we have introduced
in the previous Chapter. Note that in the following, we will liberally inter-
change the notations x and x[n] to denote a sequence as a vector embedded
in its appropriate Hilbert space.

3.4.1 Finite-Length Signals

The correspondence between the class of finite-length, length- N signals and
CN should be so immediate at this point that it does not need further com-
ment. As a reminder, the canonical basis is the canonical basis for CN. The
k-th canonical basis vector is often expressed in signal form as

o[n—kj n=0,....N—1, k=0,...,N-—1

3.4.2 Periodic Signals

As we have seen, N-periodic signals are equivalent to length-N signals. The
space of N-periodic sequences is therefore isomorphic to CV. In particular,
the sum of two sequences considered as vectors is the standard pointwise
sum for the elements:

z[n]l=x[n]+y[n] nez (3.54)

while, for the inner product, we extend the summation over a period only:

N-1

(x[nl,y[n])=>_ x*Inly(n] (3.55)
n=0

The canonical basis for the space of N-periodic sequences is the canon-
ical basis for CV, because of the isomorphism; in general, any basis for CN
is also a basis for the space of N-periodic sequences. Sometimes, however,



54 Signal Spaces Revisited

we will also consider an explicitly periodized version of the basis. For the
canonical basis, in particular, the periodized basis is composed of N vectors

of infinite-length {6 (k)}k:o___ N—1 with

o0
5" = > sln—k—iN]
1=—00
Such a sequence is called a pulse train. Note that here we are abandoning
mathematical rigor, since the norm of each of these basis vectors is infinite;
yet the pulse train, if handled with care, can be a useful tool in formal deriva-
tions.

3.4.3 Infinite Sequences

In the case of infinite sequences, whose “natural” Euclidean space would
appear to be C*, the situation is rather delicate. While the sum of two se-
quences can be defined in the usual way, by extending the sum for CV to
C®, care must be taken when evaluating the inner product. We have already
pointed out that the formula:

8}

(x[nly[nl)= Y x*Inlyln] (3.56)

n=—00
can diverge even for simple constant sequences such as x[n] =y[n]=1. A
way out of this impasse is to restrict ourselves to £»2(Z), the space of square
summable sequences, for which

ell? = |x(n]|* < o0 (3.57)
nez

This is the space of choice for all the theoretical derivations involving in-
finite sequences. Note that these sequences are often called “of finite en-
ergy”, since the square norm corresponds to the definition of energy as given
in (2.19).

The canonical basis for £5(Z) is simply the set {& (k)} wez, in signal form:

6 =6[n-kl, nkez (3.58)

This is an infinite set, and actually an infinite set of linearly independent
vectors, since

5[n—k]= Z a;6[n—1] (3.59)
1€Z/{k}

has no solution for any k. Note that, for an arbitrary signal x[#] the analysis
formula gives

ar = (60, x) = (6[n — k],x[n]) = x[k]
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so that the reconstruction formula becomes

x[n]= Z ap6® = Z x[k]16[n — k]

k=—00 k=—00

which is the reproducing formula (2.18). The Fourier basis for ¢»(Z) will be
introduced and discussed at length in the next Chapter.

As alast remark, note that the space of all finite-support signals, which
is clearly a subset of £»(Z), does not form a Hilbert space. Clearly, the space
is closed under addition and scalar multiplication, and the canonical inner
product is well behaved since all sequences have only a finite number of
nonzero values. However, the space is not complete; to clarify this, consider
the following family of signals:

1/n |n|<k
yklnl= .
0 otherwise

For k growing to infinity, the sequence of signals converges as yx[n] — y[n] =
1/n for all n; while y[n] is indeed in £,(Z), since
o 1

T2

—=—
“=n 6

y[n] is clearly not a finite-support signal.

Further Reading

A comprehensive review of linear algebra, which contains all the concepts
of Hilbert spaces but in finite dimensions, is the classic by G. Strang, Lin-
ear Algebra and Its Applications (Brooks Cole, 2005). For an introduction to
Hilbert spaces, there are many mathematics books; we suggest N. Young,
An Introduction to Hilbert Space (Cambridge University Press, 1988). As
an alternative, a more intuitive and engineering-motivated approach is in
the classic book by D. G. Luenberger, Optimization by Vector Space Methods
(Wiley, 1969).

Exercises

Exercise 3.1: Elementary operators. An operator 27 is a transforma-
tion of a given signal and is indicated by the notation

ylnl=#{x[nl}
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For instance, the delay operator ¢ is indicated as
Z{x[n]} =x[n—1]
and the one-step difference operator is indicated as
V{x[nl} =x[n]— 2{x[nl} =x[n]—x[n—1] (3.60)
A linear operator is one for which the following holds:
H{ax[nl} = a{x[n]}
{ A{x[n]+y[nl} = {x[n]}+{y[n]}
(a) Show that the delay operator Z is linear.
(b) Show that the differentiation operator 7 is linear.

(c) Show that the squaring operator . {x[n]} = x2[n] is not linear.

In CV, any linear operator on a vector x can be expressed as a matrix-vector
multiplication for a suitable N x N matrix A. In CV, we define the delay
operator as the left circular shift of a vector:

@{X}:[XN—I X0 X1 ... xN_Z]T

Assume N =4 for convenience; it is easy to see that

[0 00 1]

1 0 0 O
2{x}= x=Dx
01 0 0
0 01 0

so that D is the matrix associated to the delay operator.

(d) Using the same definition for the one-step difference operator as in
(3.60), write out the associated matrix for the operator in C*.

(e) Consider the following matrix:

[1000
1100
A=
1110
1111

Which operator do you think it is associated to? What does the opera-
tor do?
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.....

that any vector z € S is uniquely represented in this basis.
Hint: prove by contradiction.
Exercise 3.3: Vector spaces and signails.

(a) Show that the set of all ordered n-tuples [a1, a2,...,a,] with the natu-
ral definition for the sum:

lai,az,...,an]+[b1,b2,...,bpl=[a1+ b1, a2+ b,...,a,+b,]
and the multiplication by a scalar:
alay,as,...,a)=[aar,aa,...,aa,]
form a vector space. Give its dimension and find a basis.

(b) Show that the set of signals of the form y(x) = a cos(x) + b sin(x) (for
arbitrary a, b), with the usual addition and multiplication by a scalar,
form a vector space. Give its dimension and find a basis.

(c) Are the four diagonals of a cube orthogonal?

(d) Express the discrete-time impulse o[n] in terms of the discrete-time
unit step u[n] and conversely.

(e) Show that any function f(¢) can be written as the sum of an odd and
an even function, i.e. f(t) = fo(t) + fe(t) where f,(—t) = —f,(t) and
Je(=1)= fe(t).

Exercise 3.4: The Haar basis. Consider the following change of basis
matrix in C8, with respect to the standard orthonormal basis:

1 -1 6 0 O O O O
0 o 1 -1 0 0 0 O
0 0 0 O 1 -1 0 O
He 0o o 0o O O0 o 1 -1
1 1 -1 -1 0 O O O
0 0 0 O 1 1 -1 -1
1 1 1 1 -1 -1 -1 -1
1 1 1 1 1 1 1 1

Note the pattern in the first four rows, in the next two, and in the last two.
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(a) Whatis an easy way to prove that the rows in H do indeed form a basis?
(Hint: it is sufficient to show that they are linearly independent, i.e. that
the matrix has full rank. ..)

The basis described by H is called the Haar basis and it is one of the most cel-
ebrated cornerstones of a branch of signal processing called wavelet analy-
sis. To get a feeling for its properties, consider the following set of numerical
experiments (you can use Matlab or any other numerical package):

(c) Verify that HH” is a diagonal matrix, which means that the vectors are
orthogonal.

(d) Consider a constant signal {x=[1 1 ... 1]and compute its coeffi-
cients in the Haar basis.

(e) Consider an alternating signal {x=[+1 -1 +1 ... +1 —1]and
compute its coefficients in the Haar basis.



Chapter 4

Fourier Analysis

Fourier theory has a long history, from J. Fourier’s early work on the trans-
mission of heat to recent results on non-harmonic Fourier series. Fourier
theory is a branch of harmonic analysis, and in that sense, a topic in pure
and applied mathematics. At the same time, because of its usefulness in
practical applications, Fourier analysis is a key tool in several engineering
branches, and in signal processing in particular.

Why is Fourier analysis so important? To understand this, let us take a
short philosophical detour. Interesting signals are time-varying quantities:
you can imagine, for instance, the voltage level at the output of a micro-
phone or the measured level of the tide at a particular location; in all cases,
the variation of a signal, over time, implies that a transfer of energy is hap-
pening somewhere, and ultimately this is what we want to study. Now, a
time-varying value which only increases over time is not only a physical im-
possibility but a recipe for disaster for whatever system is supposed to deal
with it; fuses will blow, wires will melt and so on. Oscillations, on the other
hand, are nature’s and man’s way of keeping things in motion without tres-
passing all physical bounds; from Maxwell’s wave equation to the mechan-
ics of the vocal cords, from the motion of an engine to the ebb and flow of
the tide, oscillatory behavior is the recurring theme. Sinusoidal oscillations
are the purest form of such a constrained motion and, in a nutshell, Fourier’s
immense contribution was to show that (at least mathematically) one could
express any given phenomenon as the combined output of a number of si-
nusoidal “generators”.

Sinusoids have another remarkable property which justifies their ubiq-
uitous presence. Indeed, any linear time-invariant transformation of a sinu-
soid is a sinusoid at the same frequency: we express this by saying that sinu-
soidal oscillations are eigenfunctions of linear time-invariant systems. This
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is a formidable tool for the analysis and design of signal processing struc-
tures, as we will see in much detail in the context of discrete-time filters.

The purpose of the present Chapter is to introduce and analyze some
key results on Fourier series and Fourier transforms in the context of
discrete-time signal processing. It appears that, as we mentioned in the
previous Chapter, the Fourier transform of a signal is a change of basis in
an appropriate Hilbert space. While this notion constitutes an extremely
useful unifying framework, we also point out the peculiarities of its special-
ization within the different classes of signal. In particular, for finite-length
signals we highlight the eminently algebraic nature of the transform, which
leads to efficient computational procedures; for infinite sequences, we will
analyze some of its interesting mathematical subtleties.

4.1 Preliminaries

The Fourier transform of a signal is an alternative representation of the data
in the signal. While a signal lives in the time domain,V its Fourier repre-
sentation lives in the frequency domain. We can move back and forth at will
from one domain to the other using the direct and inverse Fourier operators,
since these operators are invertible.

In this Chapter we study three types of Fourier transform which apply to
the three main classes of signals that we have seen so far:

o the Discrete Fourier Transform (DFT), which maps length-N signals
into a set of N discrete frequency components;

¢ the Discrete Fourier Series (DFS), which maps N- periodic sequences
into a set of N discrete frequency components;

e the Discrete-Time Fourier Transform (DTFT), which maps infinite se-
quences into the space of 27t-periodic function of a real-valued argu-
ment.

The frequency representation of a signal (given by a set of coefficients in the
case of the DFT and DFS and by a frequency distribution in the case of the
DTFT) is called the spectrum.

M Discrete-time, of course.
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4.1.1 Complex Exponentials

The basic ingredient of all the Fourier transforms which follow, is the dis-
crete-time complex exponential; this is a sequence of the form:

x[n] =Ae/@m9) = Acos(wn + ¢)+ jsin(wn + ¢)]

A complex exponential represents an oscillatory behavior; A € R is the
amplitude of the oscillation, w is its frequency and ¢ is its initial phase. Note
that, actually, a discrete-time complex exponential sequence is not always
a periodic sequence; it is periodic only if w = 27(M/N) for some value of
M, N € Z. The power of a complex exponential is equal to the average energy
over a period, i.e. |AJ?, irrespective of frequency.

4.1.2 Complex Oscillations? Negative Frequencies?

In the introduction, we hinted at the fact that Fourier analysis allows us to
decompose a physical phenomenon into oscillatory components. However,
it may seem odd, that we have chosen to use complex oscillation for the
analysis of real-world signals. It may seem even odder that these oscillations
can have a negative frequency and that, as we will soon see in the context of
the DTFT, the spectrum extends over to the negative axis.

The starting point in answering these legitimate questions is to recall
that the use of complex exponentials is essentially a matter of convenience.
One could develop a complete theory of frequency analysis for real signals
using only the basic trigonometric functions. You may actually have noticed
this if you are familiar with the Fourier Series of a real function; yet the nota-
tional overhead is undoubtedly heavy since it involves two separate sets of
coefficients for the sine and cosine basis functions, plus a distinct term for
the zero-order coefficient. The use of complex exponentials elegantly uni-
fies these separate series into a single complex-valued sequence. Yet, one
may ask again, what does it mean for the spectrum of a musical sound to
be complex? Simply put, the complex nature of the spectrum is a compact
way of representing two concurrent pieces of information which uniquely
define each spectral component: its frequency and its phase. These two val-
ues form a two-element vector in R? but, since R? is isomorphic to C, we
use complex numbers for their mathematical convenience.

With respect negative frequencies, one must first of all consider, yet
again, a basic complex exponential sequence such as x[n] = e/, We can
visualize its evolution over discrete-time as a series of points on the unit cir-
cle in the complex plane. At each step, the angle increases by w, defining
a counterclockwise circular motion. It is easy to see that a complex expo-
nential sequence of frequency —w is just the same series of points with the
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difference that the points move clockwise instead; this is illustrated in de-
tail in Figure 4.1. If we decompose a real signal into complex exponentials,
we will show that, for any given frequency value, the phases of the positive
and negative components are always opposite in sign; as the two oscilla-
tions move in opposite directions along the unit circle, their complex part
will always cancel out exactly, thus returning a purely real signal.®

| Im
x[3] x[2] x[n]
x x[1]
wWo x[0],y[0]
—wy 1 Re
yl1l
n
y(3] y(2] yln]

Figure 4.1 Complex exponentials as a series of points on the unit circle; x[n] =
eJ@on and y[n]= e J®" for wy=1/5.

The final step in developing a comfortable feeling for complex oscilla-
tions comes from the realization that, in the synthesis of discrete-time sig-
nals (and especially in the case of communication systems) it is actually
more convenient to work with complex-valued signals, themselves.
Although the transmitted signal of a device like an ADSL box is a real signal,
the internal representation of the underlying sequences is complex; there-
fore complex oscillations become a necessity.

@To anticipate a question which may appear later, the fact that modulation “makes neg-
ative frequencies appear in the positive spectrum” is really a consequence of the follow-
ing very mundane formula:

cosacosf3 = % [cos(a+ B)+cos(a— )]



Fourier Analysis 63

4.2 The DFT (Discrete Fourier Transform)

We now develop a Fourier representation for finite-length signals; to do so,
we need to find a set of oscillatory signals of length N which contain a whole
number of periods over their support. We start by considering a family of
finite-length sinusoidal signals (indexed by an integer k) of the form

wk[n]=ej“’k”, n=0,.... N—1 4.1)

where all the wy’s are distinct frequencies which fulfill our requirements. To
determine these frequency values, note that, in order for wy[n] to contain a
whole number of periods over N samples, it must conform to

wi[N]=wi[0] =1
which translates to
(elor)N =1

The above equation has N distinct solutions which are the N roots of unity
ei2rm/N m =0,...,N — 1; if we define the complex number

Wy = e/ o
then the family of NV signals in (4.1) can be written as

wi[n] =Wy "k, n=0,...,N—1 4.2)
for each value of k =0,..., N — 1. We can represent these N signals as a set

.....

wh=[1 wy*t w? ow, R (4.3)

The real and imaginary parts of wk) for N = 32 and for some values of k are
plotted in Figures 4.2 to 4.5.

.....

therefore a basis for CV; indeed we have (noting that (ng k )’k = WA’,C ):

N—1 N form=n
<vv(m),“r(n)> — Z Wj{}m—n)z _ 1— Wj{}m—n)N (4.4)
— ———— =0 form#n
= (m—n)
1- Wy

since WA",N =1 for all i € Z. In more compact notation we can therefore state
that

(wim) Wy = N §[n—m] (4.5)

.....

the space of length- N signals. It is immediately evident that this basis is not
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orthonormal, since Hw(k)H2 = N, but that it could be made orthonormal
simply by scaling the basis vectors by (1/v/N). In signal processing prac-
tice, however, it is customary to keep the normalization factor explicit in the
change of basis formulas; this is mostly due to computational reasons, as we
will see later, but, for the sake of consistency with the mainstream literature,
we will also follow this convention.

4.2.1 Matrix Form

The Discrete Fourier Transform (DFT) analysis and synthesis formulas can
now be easily expressed in the familiar matrix notation as in Section 3.3.3:
define an N x N square matrix W by stacking the conjugate of the basis vec-
tors, i.e. W, = e~ /@n/Nnk — WA’,”“ ; from this we can state, for all vectors
xeCN:

X=Wx (4.6)
1
x= NWHX 4.7)

(note the normalization factor in the reconstruction formula). Here, X is the
set of Fourier coefficients in vector form, whose physical interpretation we
will explore shortly. Note that the DFT preserves the energy of the finite-
length signal: indeed Parseval’s relation (3.43) becomes

Il = —— [IX] 4.8)
2— m 2 .

(once again, note the explicit normalization factor).

4.2.2 Explicit Form

It is very common in the literature to explicitly write out the inner prod-
ucts in (4.6) and (4.7); this is both for historical reasons and to underscore
the highly structured form of this transformation which, as we will see, is
the basis for very efficient computational procedures. In detail, we have the
analysis formula
N-1
X[k]:Zx[n]WA?k, k=0,....N—1 (4.9)
n=0

and the dual synthesis formula
1 Nt
x[n]:NZX[k]WN—"’“, n=0,...,N—1 (4.10)
k=0

where we have used the standard convention of “lumping” the normalizing
factor (1/N) entirely within in the reconstruction sum (4.10).
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4.2.3 Physical Interpretation

To return to the physical interpretation of the DFT, what we have just ob-
tained is the decomposition of a finite-length signal into a set of N sinu-
soidal components; the magnitude and initial phase of each oscillator are
given by the coefficients X[k] in (4.9) (or, equivalently, by the vector ele-
ments Xy in (4.6)®). To stress the point again:

o take an array of N complex sinusoidal generators;
o set the frequency of the k-th generator to (27t/N)k;

o set the amplitude of the k-th generator to |X (k] }, i.e. to the magnitude
of the k-th DFT coefficient;

o set the phase of the k-th generator to £ X[k], i.e. to the phase of the
k-th DFT coefficient;

o start the generators at the same time and sum their outputs.

The first N output values of this “machine” are exactly x[n].

If we look at this from the opposite end, each X[k] shows “how much”
oscillatory behavior at frequency 27t/k, is contained in the signal; this is
consistent with the fact that an inner product is a measure of similarity. The
coefficients X[k] are referred to as the spectrum of the signal. The square
magnitude |X (k] {2 is a measure (up to a scale factor N) of the signal’s energy
at the frequency (27t/ N)k; the coefficients X[k], therefore, show exactly how
the global energy of the original signal is distributed in the frequency do-
main while Parseval’s equality (4.8) guarantees that the result is consistent.
The phase of each Fourier coefficient, indicated by £ X[k], specifies the ini-
tial phase of each oscillator for the reconstruction formula, i.e. the relative
alignment of each complex exponential at the onset of the signal. While this
does not influence the energy distribution in frequency, it does have a sig-
nificant effect on the shape of the signal in the discrete-time domain as we
will shortly see in more detail.

Some examples for signals in C5 are plotted in Figures 4.6-4.9. Figure
4.6 shows one of the simplest cases: indeed, the signal x[n] is a sinusoid
whose frequency coincides with that of one of the basis vectors (precisely,
to that of w*)) and, as a consequence of the orthogonality of the basis, only
X[4] and X[60] are nonzero (this can be easily verified by decomposing the
sinusoid as the sum of two appropriate basis functions). Figure 4.7 shows
the same signal, but this time with a phase offset. The magnitude DFT

®From now on, the perfect equivalence between the notations y[n] and y, while dealing
with a length-N signal will be taken for granted.
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does not change, but the phase offset appears in the phase of the transform.
Figure 4.8 shows the transform of a sinusoid whose frequency does not co-
incide with any of the basis frequencies. As a consequence, all of the basis

N 1

I

32 | 1
oo
<
g
* * * * * *
0 10 20 30 40 50 60
3.14 p
Q
(2}
E ? * * * * * *
a | 0 10 20 30 40 50 60
-3.14 1

Figure 4.6 Signal and DFT (example).
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vectors are needed to reconstruct the signal. Clearly, the magnitude is larger
for frequencies closer to that of the original signal’s (67t/64 and 77t/64 in this
case); yet, to reconstruct x[n] exactly, we need the contribution of the entire

T T
x[n]=cos(—n+—), n=0,1,2,...63

8 3
32 .
[eTo]
(3]
g
* * * * * *
0 10 20 30 40 50 60
314 [ ]
g
w
E * * * * * *
Slo 10 20 30 40 50 610
314 | ]

Figure 4.7 Signal and DFT (example cont.d).
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Figure 4.8 Signal and DFT (example cont.d).

basis. Finally, Figure 4.9 shows the DFT of a step signal. It can be shown
(with a few trigonometric manipulations) that the DFT of a step signal is
sin((/N)Mk
sin((t/N)k)
where N is the length of the signal and M is the length of the step (in
Figure 4.9 N =64 and M =5, for instance.)

JEM-1)k
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Figure 4.9 Signal and DFT (example cont.d).

4.3 The DFS (Discrete Fourier Series)

Consider the reconstruction formula in (4.10); what happens if we let the
index n roam outside of the [0, N — 1] interval? Since WA(,"J”N)’C = W'k for
all i € Z, we note that x[n + i N] = x[n]. In other words, the reconstruction
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formula in (4.10) implicitly defines a periodic sequence of period N. This is
the reason why, earlier, we stated that periodic sequences are the natural
way to embed a finite-length signal into a sequence: their Fourier represen-
tation is formally identical. This is not surprising since a) we have already
established a correspondence between CV and CN and b) we are actually
expressing a length- N sequence as a combination of N-periodic basis sig-
nals.

The Fourier representation of periodic sequences is called the Discrete
Fourier Series (DFS), and its explicit analysis and synthesis formulas are the
exact equivalent of (4.9) and (4.10), modified only with respect to the range
of the indices. We have already seen that in (4.10), the reconstruction for-
mula, 7 is now in Z. Symmetrically, due to the N-periodicity of W]\’,“, we can
let the index k in (4.9) assume any value in Z too; this way, the DFS coef-
ficients become an N-periodic sequence themselves and the DFS becomes
a change of basis in CV using the definition of inner product given in Sec-
tion (3.4.2) and the formal periodic basis for CV:

N-1
X[k] :ch[n]wjg", keZ (4.11)
n=0
1 N-1
x[n]:NZX’[k]WN—"’C, nez 4.12)
k=0

4.4 The DTFT (Discrete-Time Fourier Transform)

We now consider a Fourier representation for infinite non-periodic se-
quences. From a purely mathematical point of view, the Discrete-Time
Fourier Transform of a sequence x[#n] is defined as

o0
X(e/®)= "> xln]eien (4.13)
n=-00
The DTFT is therefore a complex-valued function of the real argument w,
and, as can be easily verified, it is periodic in « with period 27. The some-
what odd notation X(e/¢) is quite standard in the signal processing litera-
ture and offers several advantages:

e it stresses the basic periodic nature of the transform since, obviously,
ellw+2m) — gjw,

o regardless of context, it immediately identifies a function as the
Fourier transform of a discrete-time sequence: for exemple U(e/?) is
just as readily recognizable;
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e it provides a convenient notational framework which unifies the
Fourier transform and the z-transform (which we will see shortly).

The DTFT, when it exists, can be inverted via the integral

x[n]=$J‘ X(e/®)el®"dw (4.14)

-7

as can be easily verified by substituting (4.13) into 4.14) and using

T
f e 1=k qo =21 5[n— k]
-7

In fact, due to the 27-periodicity of the DTFT, the integral in (4.14) can be
computed over any 2n-wide interval on the real line (i.e. between 0 and 2,
for instance). The relation between a sequence x[n] and its DTFT X(e/®)
will be indicated in the general case by

x[n] &5 X(el®)

While the DFT and DFS were signal transformations which involved only
a finite number of quantities, both the infinite summation and the real-
valued argument, appearing in the DTFT, can create an uneasiness which
overshadows the conceptual similarities between the transforms. In the fol-
lowing, we start by defining the mathematical properties of the DTFT and
we try to build an intuitive feeling for this Fourier representation, both with
respect to its physical interpretation and to its conformity to the “change of
basis” framework, that we used for the DFT and DFS.

Mathematically, the DTFT is a transform operator which maps discrete-
time sequences onto the space of 27-periodic functions. Clearly, for the
DTFT to exist, the sum in (4.13) must converge, i.e. the limit for M — oo
of the partial sum

M

Xp(el®) = Z x[n]ejon (4.15)
n=—M

must exist and be finite. Convergence of the partial sum in (4.15) is very easy
to prove for absolutely summable sequences, that is for sequences satisfying

M—o00

M
lim Z |x[n]| <0 (4.16)
n=—M

since, according to the triangle inequality,

M M
|XM(ef“’)|§ Z }x[n] e‘f“’"|= Z }x[n]| 4.17)
n=—M n=—M
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For this class of sequences it can also be proved that the convergence of
Xu(el®) to X(e/ @) is uniform and that X(e/) is continuous. While absolute
summability is a sufficient condition, it can be shown that the sum in (4.15)
is convergent also for all square-summable sequences, i.e. for sequences
whose energy is finite; this is very important to us with respect to the dis-
cussion in Section 3.4.3 where we defined the Hilbert space ¢»(Z). In the
case of square summability only, however, the convergence of (4.15) is no
longer uniform but takes place only in the mean-square sense, i.e.
Y
lim J |Xu(e?®) - X(e/) dw =0 (4.18)
M—00 .
Convergence in the mean square sense implies that, while the total energy
of the error signal becomes zero, the pointwise values of the partial sum may
never approach the values of the limit. One manifestation of this odd behav-
ior is called the Gibbs phenomenon, which has important consequences in
our approach to filter design, as we will see later. Furthermore, in the case
of square-summable sequences, X(e/®) is no longer guaranteed to be con-
tinuous.
As an example, consider the sequence:

1 for—-N<n<N
x[n]:{ (4.19)

0 otherwise

Its DTFT can be computed as the sum®

N
X(el¥)= Z e~jon

n=—N

N N
PRGN
n=1 n=0

1_e—jw(N+1) l_eja)(N-‘rl)

- + -
1—-e7/@ 1-e/®
1 — e—Jj@(N+1)

_ pjw(N+1)
_ i L€ e 12T
ejw/Z_e—ja)/Z e—ja)/Z_ejw/Z

el ON+3) _ p—jo(N+3)

elw/2 _ g—jw/2
_ sin (a) (N—i— %))
 sin(w/2)

l_xNJrl

N
@Remember that E x"=
= 1—x
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Figure 4.10 The DTFT of the signal in (4.19).

The DTFT of this particular signal turns out to be real (we will see later
that this is a consequence of the signal’s symmetry) and it is plotted in Fig-
ure 4.10. When, as is very often the case, the DTFT is complex-valued, the
usual way to represent it graphically takes the magnitude and the phase sep-
arately into account. The DTFT is always a 27-periodic function and the
standard convention is to plot the interval from —r to 7. Larger intervals
can be considered if the periodicity needs to be made explicit; Figure 4.11,
for instance, shows five full periods of the same function.

20 R
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Figure 4.11 The DTFT of the signal in (4.19), with explicit periodicity.

4.4.1 The DTFT as the Limit of a DFS

A way to gain some intuition about the structure of the DTFT formulas is
to consider the DFS of periodic sequences with larger and larger periods.
Intuitively, as we look at the structure of the Fourier basis for the DFS, we
can see that the number of basis vectors in (4.9) grows with the length N
of the period and, consequently, the frequencies of the underlying complex
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exponentials become “denser” between 0 and 27t. We want to show that, in
the limit, we end up with the reconstruction formula of the DTFT.

To do so, let us restrict ourselves to the domain of absolute summable
sequences; for these sequences, we know that the sum in (4.13) exists. Now,
given an absolutely summable sequence x[n], we can always build an N-
periodic sequence ¥[n] as

%[n]= Z x[n+iN] (4.20)

i=—00

for any value of N (see Example 2.2); this is guaranteed by the fact that the
above sum converges for all n € Z (because of the absolute summability of
x[n]) so that all values of X[rn] are finite. Clearly, there is overlap between
successive copies of x[n]; the intuition, however, is the following: since in
the end we will consider very large values for N and since x[n], because
of absolute summability, decays rather fast with 7, the resulting overlap of
“tails” will be negligible. This can be expressed as

Al]ilgo)?[n]=x[n]

Now consider the DFS of ¥[n]:

N-1 00 N-1
X[k]=>_ x[n] eI Nk = > (Zx[n—i—iN] e—f%”("“N)’“) 4.21)
n=0

i=—00 \ n=0

where in the last term we have used (4.20), interchanged the order of the
summation and exploited the fact that e /@7/NIn+iNk — g—j@rn/N)nk We
can see that, for every value of i in the outer sum, the argument of the inner
sum varies between i N and iN + N — 1, i.e. non-overlapping intervals, so
that the double summation can be simplified as

o0
Xk =Y. x[m] e~ ¥ mk 4.22)
and therefore
X[k]=X(e!®)| _or, (4.23)
- N

This already gives us a noteworthy piece of intuition: the DFS coefficients
for the periodized signal are a discrete set of values of its DTFT (here con-
sidered solely as a formal operator) computed at multiples of 27t/N. As
N grows, the spacing between these frequency intervals narrows more and
more so that, in the limit, the DFS converges to the DTFT.
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To check that this assertion is consistent, we can now write the DFS re-
construction formula using the DFS values given to us by inserting (4.23)
in (4.10):

N-1
1 + 2T + 2T
*[n)= > X(el ¥k el Fnk (4.24)
k=0

By defining A =(27t/N), we can rewrite the above expression as

N-1
1 . .
fc[n]:E E X(e/(kA)) gilkAn A (4.25)
k=0

and the summation is easily recognized as the Riemann sum with step A
approximating the integral of f(w) = X(e/®)e/*" between 0 and 2. As N
goes to infinity (and therefore X¥[n] — x[n]), we can therefore write

2
1 ] .
f[n]ﬁ—f X' el dw (4.26)
27 0
which is indeed the DTFT reconstruction formula (4.14).®

4.4.2 The DTFT as a Formal Change of Basis

We now show that, if we are willing to sacrifice mathematical rigor, the DTFT
can be cast in the same conceptual framework we used for the DFT and DFS,
namely as a basis change in a vector space. The following formulas are to be
taken as nothing more than a set of purely symbolic derivations, since the
mathematical hypotheses under which the results are well defined are far
from obvious and are completely hidden by the formalism. It is only fair to
say, however, that the following expressions represent a very handy and in-
tuitive toolbox to grasp the essence of the duality between the discrete-time
and the frequency domains and that they can be put to use very effectively
to derive quick results when manipulating sequences.

One way of interpreting Equation (4.13) is to see that, for any given value
wy, the corresponding value of the DTFT is the inner product in £,(Z) of
the sequence x[n] with the sequence e/«”; formally, at least, we are still
performing a projection in a vector space akin to C*:

X(e/®)={e/*", x[n])

Here, however, the set of “basis vectors” {e/®"} R is indexed by the real
variable w and is therefore uncountable. This uncountability is mirrored in

®(Clearly (4.26) is equivalent to (4.14) in spite of the different integration limits since all the
quantities under the integral sign are 27r-periodic and we are integrating over a period.
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the inversion formula (4.14), in which the usual summation is replaced by
an integral; in fact, the DTFT operator maps ¢»(Z) onto L, ([—7,7t]) which
is a space of 2r-periodic, square integrable functions. This interpretation
preserves the physical meaning given to the inner products in (4.13) as a
way to measure the frequency content of the signal at a given frequency; in
this case the number of oscillators is infinite and their frequency separation
becomes infinitesimally small.

To complete the picture of the DTFT as a change of basis, we want to
show that, at least formally, the set {e/®"},cr constitutes an orthogonal
“basis” for £2(Z).® In order to do so, we need to introduce a quirky mathe-
matical entity called the Dirac delta functional; this is defined in an implicit
way by the following formula

[e ¢}
f o(t—1)f(t)dt = f(7) (4.27)
—00
where f(t) is an arbitrary integrable function on the real line; in particular
[e ¢}
f o(t)f(t)dt = f(0) (4.28)
—00

While no ordinary function satisfies the above equation, 6(¢) can be inter-
preted as shorthand for a limiting operation. Consider, for instance, the
family of parametric functions”

re(t) = krect(kt) (4.29)

which are plotted in Figure 4.12. For any continuous function f(¢) we can
write

00 1/2k
f rk(t)f(t)dt:kf FOdt =] e son (4.30)

—00 -1/2k

where we have used the Mean Value theorem. Now, as k goes to infinity, the
integral converges to f(0); hence we can say that the limit of the series of
functions r¢(¢) converges then to the Dirac delta. As already stated, the delta
cannot be considered as a proper function, so the expression o0(t) outside of
an integral sign has no mathematical meaning; it is customary however to
associate an “idea” of function to the delta and we can think of it as being

©®You can see here already why this line of thought is shaky unsafe: indeed, e/©" & {,(Z)!
(M The rect function is discussed more exhaustively in Section 5.6 its definition is

1 for|x|<1/2
rect(x) =
0 otherwise
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undefined for ¢ # 0 and to have a value of co at t = 0. This interpretation,
together with (4.27), defines the so-called sifting property of the Dirac delta;
this property allows us to write (outside of the integral sign):

5(t —1)f(t)=6(t — 1) (1) (4.31)
k=6
6 - .
k=5
k=4
4 - -
| [ k=3
k=2
2 - .
k=1
0
-1 -0.5 0.5 1

Figure 4.12 The Dirac delta as the limit of a family of rectangular functions.

The physical interpretation of the Dirac delta is related to quantities ex-
pressed as continuous distributions for which the most familiar example is
probably that of a probability distribution (pdf). These functions represent
a value which makes physical sense only over an interval of nonzero mea-
sure; the punctual value of a distribution is only an abstraction. The Dirac
delta is the operator that extracts this punctual value from a distribution, in
a sense capturing the essence of considering smaller and smaller observa-
tion intervals.

To see how the Dirac delta applies to our basis expansion, note that
equation (4.27) is formally identical to an inner product over the space of
functions on the real line; by using the definition of such an inner product
we can therefore write

f(t):f (6(s—1),f(s))b(rt—7)d7 (4.32)

which is, in turn, formally identical to the reconstruction formula of Sec-
tion 3.4.3. In reality, we are interested in the space of 27t-periodic functions,
since that is where DTFTs live; this is easily accomplished by building a 27-
periodic version of the delta as

b(w)=2m Z 5(w—21k) (4.33)

k=—00
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where the leading 27 factor is for later convenience. The resulting object
is called a pulse train, similarly to what we built for the case of periodic se-
quences in CN. Using the pulse train and given any 27-periodic function
f(w), the reconstruction formula (4.32) becomes

o+21

f@)=5- J (5(0-9)./(0)) 52— 9)dp (4.34

(o)

for any o e R.

Now that we have the delta notation in place, we are ready to start. First
of all, we show the formal orthogonality of the basis functions {e/*"} ,cg.
We can write

e

2m 6(w—wo)e!“"dew = el " (4.35)
-7

The left-hand side of this equation has the exact form of the DTFT recon-
struction formula (4.14); hence we have found the fundamental relationship

elwon PT_FT) 5(60— wo) (4.36)

Now, the DTFT of a complex exponential e/?" is, in our change of basis in-
terpretation, simply the inner product (e/©”, e/o"); because of (4.36) we can
therefore express this as

(e/®" el = §(w —0) (4.37)

which is formally equivalent to the orthogonality relation in (4.5).

We now recall for the last time that the delta notation subsumes a limit-
ing operation: the DTFT pair (4.36) should be interpreted as shorthand for
the limit of the partial sums

se(w)= i e jon

n=—k

(where we have chosen w( = 0 for the sake of example). Figure 4.13 plots
|sk(w)| for increasing values of k (we show only the [—7, 7t] interval, although
of course the functions are 27-periodic). The family of functions si(w) is
exactly equivalent to the family of functions ri(¢) we saw in (4.29); they too
become increasingly narrow while keeping a constant area (which turns out
to be 27). That is why we can simply state that si(w) — o(w).
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Figure 4.13 The sum |eri=— c e’ “"} for different values of k.

From (4.36) we can easily obtain other interesting results: by setting
wo = 0 and by exploiting the linearity of the DTFT operator, we can derive
the DTFT of a constant sequence:

a 25 aé(w) (4.38)

or, using Euler’s formulas, the DTFTs of sinusoidal functions:

| . o
cos(won + ¢) 5[€795(0 —w0) + e 17 6(e+ wo)] (4.39)
sin(won + ¢) = _7] [e/?6(w — wo)— e ™79 8(w+ wo)] (4.40)

As we can see from the above examples, we are defining the DTFT for se-
quences which are not even square-summable; again, these transforms are
purely a notational formalism used to capture a behavior, in the limit, as we
showed before.

4.5 Relationships between Transforms

We can now show that, thanks to the delta formalism, the DTFT is the most
general type of Fourier transform for discrete-time signals. Consider alength-
N signal x[n] and its N DFT coefficients X[k]; consider also the sequences
obtained from x[n] either by periodization or by building a finite-support
sequence. The computation of the DTFTs of these sequences highlights
the relationships linking the three types of discrete-time transforms that we
have seen so far.

Periodic Sequences. Given alength-N signal x[n], n=0,...,N—1, con-
sider the associated N-periodic sequence %[n] = x[n mod N] and its N DES
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coefficients X[k]. If we try to write the analysis DTFT formula for X[n] we
have

o0
X(el®)= Z Z[n]e-ien

S (1 = 'Zlnk) —jwn
Z ZX[k] el Nk | =i (4.41)

—00 k=0
1 N-1
:NZX[k (Z el Nk -fw") (4.42)
k=0 n=-—0oo

where in (4.41) we have used the DFS reconstruction formula. Now we rec-
ognize in the last term important to recognize the last terms of (4.42) as
the DTFT of a complex exponential of frequency (27t/N)k; we can therefore
write

- 1 &= - 27
X(el*)=~ ZX[k] 5 (a) - k) (4.43)
k=0

which is the relationship between the DTFT and the DFS. If we restrict our-
selves to the [—m, 7] interval, we can see that the DTFT of a periodic se-
quence is a series of regularly spaced deltas placed at the N roots of unity
and whose amplitude is proportional to the DFS coefficients of the sequence.
In other words, the DTFT is uniquely determined by the DFS and vice versa.

Finite-Support Sequences. Given a length-N signal x[n], n = 0,...,
N—1andits N DFT coefficients X[ k], consider the associated finite-support
sequence

_ {x[n] 0<n<N
x[n]=

0 otherwise

from which we can easily derive the DTFT of x as

N-1
. 27
Jwy — -
X(e )—ZX[k]A (w > k) (4.44)
k=0
with
1 N-1 ]
A(a))=ﬁr;)e jom

What the above expression means, is that the DTFT of the finite support
sequence x[n] is again uniquely defined by the N DFT coefficients of the
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finite-length signal x[n] and it can be obtained by a type of Lagrangian in-
terpolation. As in the previous case, the values of DTFT at the roots of unity
are equal to the DFT coefficients; note, however, that the transform of a fi-
nite support sequence is very different from the DTFT of a periodized se-
quence. The latter, in accordance with the definition of the Dirac delta, is
defined only in the limit and for a finite set of frequencies; the former is just
a (smooth) interpolation of the DFT.

4.6 Fourier Transform Properties

4.6.1 DTFT Properties

The DTFT possesses the following properties.
Symmetries and Structure. The DTFT of a time-reversed sequence is
x[—n] &= X(e /@) (4.45)
while, for the complex conjugate of a sequence we have
x*[n] o= X*(e™1®) (4.46)

For the very important case of a real sequence x[n] € R, property 4.46
implies that the DTFT is conjugate-symmetric:

X(e/®)=X*(e 1) (4.47)
which leads to the following special symmetries for real signals:

e The magnitude of the DTFT is symmetric:

|X(e/®)| = |x(e™T)| (4.48)
e The phase of the DTFT is antisymmetric:

£X(e/)=~4X(e7) (4.49)
o Thereal part of the DTFT is symmetric:

Re{X(e/®)} =Re{X(e )} (4.50)
e The imaginary part of the DTFT is antisymmetric:

Im{X(e/®)} =—Im{X(e~/®)} (4.51)
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Finally, if x[n] is real and symmetric, then the DTFT is real:
x[n] €R, x[-n]=x[n] < X(e/“)eR (4.52)

while, for real antisymmetric signals we have that the DTFT is purely imagi-
nary:

x[n] €R, x[—n] =—x[n] < Re{X(e/®)} =0 (4.53)

Linearity and Shifts. The DTFT is a linear operator:
ax[n]+ By[n] &= aX(el®)+BY(e/?) (4.54)
A shift in the discrete-time domain leads to multiplication by a phase term

in the frequency domain:

x[n — ng) pllild e 1M X (i) (4.55)

while multiplication of the signal by a complex exponential (i.e. signal mod-
ulation by a complex “carrier” at frequency wg) leads to

efonyn] E5 X (e(@-w0) (4.56)

which means that the spectrum is shifted by wy. This last result is known as
the modulation theorem.

Energy Conservation. The DTFT satisfies the Plancherel-Parseval equal-
ity:

(x[n],y[n])= 21 (X(e/®), Y(e/®)) (4.57)

21
or, using the respective definitions of inner product for ¢,(Z) and L, ([—, 7t]):

Z x*[n]y[n]=% X*(e/)Y(e!“)dw (4.58)

n=—0oo -7

(note the explicit normalization factor 1/27). The above equality specializes
into Parseval’s theorem as

Z )x[n])2=%J )X(ej‘“))zda) (4.59)

which establishes the conservation of energy property between the time and
the frequency domains.
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4.6.2 DFS Properties

The DTFT properties we have just seen extend easily to the Fourier Trans-
form of periodic signals. The easiest way to obtain the particularizations
which follow is to apply relationship (4.43) to the results of the previous Sec-
tion.

Symmetries and Structure. The DFS of a time-reversed sequence is

i=n] &5 g[—k] (4.60)

while, for the complex conjugate of a sequence we have

] & 2 -k] (4.61)

For real periodic sequences, the following special symmetries hold (see
(4.47)—-(4.53)):

X[k]=X*[—k] (4.62)
|X1k]| = |X[—K]| (4.63)
£X[k] =—£X[—k] (4.64)

Re{X[k]} =Re{X[—k]} (4.65)
Im{X[k]} = -Im{X[-k]} (4.66)

Finally, if ¥[#n] is real and symmetric, then the DFS is real:
X[n]=x[-n] < X[k]€eR (4.67)

while, for real antisymmetric signals, we can state that the DFS is purely
imaginary.

Linearity and Shifts. The DFS is a linear operator, since it can be ex-
pressed as a matrix-vector product. A shift in the discrete-time domain
leads to multiplication by a phase term in the frequency domain:

DFS k

x[n—ng] e Wy " X[k] (4.68)

while multiplication of the signal by a complex exponential of frequency

multiple of 27t/ N leads to of a shift in frequency:

DFS

Wy "% [n] & X[k — ko] (4.69)

Energy Conservation. We have already seen the energy conservation
property in the context of basis expansion. Here, we simply recall Parseval’s
theorem, which states

N-1 ) ) 1 N-1 _ )
Z(:))x[n]| == ;)X[k]) (4.70)
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4.6.3 DFT Properties

The properties of the DFT are obviously the same as those for the DFES, given
the formal equivalence of the transforms. The only detail is how to inter-
pret shifts, index reversal and symmetries for finite, length-N vectors; this
is easily solved by considering the fact that the equivalence DFT-DEFS trans-
lates in the time domain to a homomorphism between a length-N signal
and its associated N-periodic extension to an infinite sequence. A shift, for
instance, can be applied to the periodized version of the signal and the re-
sulting shifted length N signal is given by the values of the shifted sequence
from 0 to N — 1, as previously explained in Section 2.2.2.

Mathematically, this means that all shifts and time reversals of a length-
N signal are operated modulo N. Consider a length-N signal:

[x[0] x[1] ... x[N—-1]]" =x[n] 4.71)
Its time-reversed version is
[x[0] x[N—1] x[N-2] ... x[2] x[1]]" =x[-n mod N] (4.72)

as we can easily see by considering the underlying periodic extension (note
that x[0] remains in place!) A shift by k corresponds to a circular shift:

[x[N—k] x[N—k+1] ... x[N—1] x[0] x[1] ... x[N—k-1]]"
=x[(n—k) mod N] (4.73)

‘ I IA IV‘T TA

3 0 1 2

1o
-—
o—o-

—1 F - —1 .

Figure 4.14 Examples of finite-length symmetric signals for N = 2,3,4,5. Uncon-
strained values are drawn in gray.



Fourier Analysis 87

The concept of symmetry can be reinterpreted as follows: a symmetric sig-
nal is equal to its time reversed version; therefore, for a length- N signal to be
symmetric, the first member of (4.71) must equal the first member of (4.72),
that is

x[k]=x[N—k], k=12,...,|(N-1)/2] (4.74)

Note that, in the above definition, the index k runs from 1 of [(N —1)/2];
this means that symmetry does not place any constraint on the value of x[0]
and, similarly, the value of x[N/2] is also unconstrained for even-length sig-
nals. Figure 4.14 shows some examples of symmetric length-N signals for
different values of N. Of course the same definition can be used for anti-
symmetric signals with just a change of sign.

Symmetries and Structure. The symmetries and structure derived for
the DFS can be rewritten specifically for the DFT as

x[=n mod N] &% X[-k mod N] (4.75)
x*[n] 2L X*[=k mod N] (4.76)

The following symmetries hold only for real signals:

X[k]=X*[-k mod N] 4.77)
|X1k]|=|X[-k mod N]| (4.78)
£X[k] = —£X[—k mod N] (4.79)

Re{X[k]} =Re{X[—k mod N]} (4.80)
Im{X[k]} =-Im{X[—k mod N]} (4.81)

Finally, if x[n] is real and symmetric (using the symmetry definition in (4.74),
then the DFT is real:

x[k]=x[N—k], k=1,2,...,|(N-1)/2] <= X[k] eR (4.82)
while, for real antisymmetric signals we have that the DFT is purely imagi-

nary.

Linearity and Shifts. The DFT is obviously a linear operator. A circular
shift in the discrete-time domain leads to multiplication by a phase term in
the frequency domain:

x[(n—np) mod N] &5 W™ X[k] (4.83)

while the finite-length equivalent of the modulation theorem states

Wy ™0 x[n] &5 X[(k — ko) mod N] (4.84)
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Discrete-Time Fourier Transform (DTFT)

used for: infinite, two sided signals (x[n] € £,(Z))
analysis formula: X(el®) = Z x[n]e~ier
1"27%0
synthesis formula: x[n]= Z_J X(elYel“"dw
s
-7
symmetries: x[—n] il X(e7I®)

x*[n] &5 X (e7I)

. DTFT _; "
shifts: x[n —ng] — e /9™ X(e/?)

el x[n] DTFT X (edt@=en)

00 1 T
Parseval: n:Zoo|X[n]|2: Efﬂ|X(efw)}2dw

Some DTFT pairs

x[n]=6[n—k] X(e/®)=e-jwk
x[n]=1 X(e/®)=6(w)
. 1~
= X(ei©)= 4+ -5
x{n]=uln] (e/9)= 5 +5 8(®)
. 1
=a” ) 1 X(el®)= ——
x(n]=a"uln), lal< (/)= ———
x[n]:ejwﬂn X(el'w)=5(cu—w0)
. 1 Lo Lo~
x[n]=cos(won + @) X(e'?) = > [e/? 0(w—wo)+ e ?6(w+ w)]
x[n]=sin(won + ¢) X(e/®) = _?] [e/? 6(w — wo)— e ? 6(w+ wy)]
x[n]= 1 forOS'nSN—l X(ejw):sin.((N/Z)w)efj%w
0 otherwise sin(w/2)
Discrete Fourier Series (DFS)
used for: periodic signals (%[n] € CN)
N-1
analysis formula: X[k]sz[n]Wl\;‘k, k=0,....N—1
=
synthesis formula: X[n]zﬁ X[k]WI\?"k, n=0,...,.N—1



symmetries:

shifts:

Parseval:
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i=n] &5 %-k]

n] & -k

£[(n—no)] &> W™ R[k]

Wy "0 2 n] & X[(k — ko)]

N-1 ; ) 1 N-1 ~ )
2 [t =5 2 Xtk

Discrete Fourier Transform (DFT)

used for:

analysis formula:

synthesis formula:

symmetries:

shifts:

Parseval:

finite support signals (x[n] € CN)

N-1
X[k =Y x[nIWyk,
N1

X[kIWy "k, n=o,...
k=0

k=0,...

x[n]= ,N—1

2= i

x[—n mod N] PN X[—k mod N]

x*[n] LR X*[—k mod N]

x[(n—ng) mod N] BELLN WAI,C"“X[IC]

Wl\ynk‘)x[n] PN X[(k — ko) mod N]

N-1 ) 1 N-1 )
;}x[n]\ :N;}X[k]\

Some DFT pairs for length- N signals

(n,k=0,1,...,N—1)

x[n]=6[n— M]
x[n]=1
x[n]=ei L

2
x[n]=cos (Wn Ln+¢)

27
=sin| — L
x[n] sm(N n+¢)
1 forn<M-1
x[n]=
0 forM<n<N-1

X[k]= e i Mk
X[k]=N6&[k]
X[k]= N6k —I]

X[k]=g [e/? 5[k — L]+ e™? 5[k — N+ L)]]

X[k]= # [e/? 6k — L] — e 5[k — N+ L]]
_sin((z/N)Mk) i E(M-1k
Xkl = sin((/N)k) !
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Energy Conservation. Parseval’s theorem for the DFT is (obviously) iden-
tical to (4.70):

N-1 ) 1 N-1 )
;))x[n]) == ;})X[k]) (4.85)

4.7 Fourier Analysis in Practice

In the previous Sections, we have developed three frequency representa-
tions for the three main types of discrete-time signals; the derivation was
eminently theoretical and concentrated mostly upon the mathematical
properties of the transforms seen as a change of basis in Hilbert space. In
the following Sections we will see how to put the Fourier machinery to prac-
tical use.

We have seen two fundamental ways to look at a signal: its time-domain
representation, in which we consider the values of the signal as a function
of discrete time, and its frequency-domain representation, in which we con-
sider its energy and phase content as a function of digital frequency. The in-
formation contained in each of the two representations is exactly the same,
as guaranteed by the invertibility of the Fourier transform; yet, from an an-
alytical point of view, we can choose to concentrate on one domain or the
other according to what we are specifically seeking. Consider for instance
a piece of music; such a signal contains two coexisting perceptual features,
meter and key. Meter can be determined by looking at the duration patterns
of the played notes: its “natural” domain is therefore the time domain. The
key, on the other hand, can be determined by looking at the pitch patterns
of the played notes: since pitch is related to the frequency content of the
sound, the natural domain of this feature is the frequency domain.

We can recall that the DTFT is mostly a theoretical analysis tool; the
DTFTs which can be computed exactly (i.e. those in which the sum in (4.13)
can be solved in closed form) represent only a small set of sequences; yet,
these sequences are highly representative and they will be used over and
over to illustrate a prototypical behavior. The DFT,® on the other hand,
is fundamentally a numerical tool in that it defines a finite set of operations
which can be computed in a finite amount of time; in fact, a very efficient al-
gorithmic implementation of the DFT exists under the name of Fast Fourier

®This also applies to the DFS, of course, which is formally identical. As a general remark,
whenever we talk about the DFT of a length- N signal, the same holds for the DFS of an
N-periodic signal; for simplicity, from now on we will just concentrate on the DFT.
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Transform (FFT) which only requires a number of operations on the order
of N(log N) for an N-point data vector. The DFT, as we know, only applies
to finite-length signals but this is actually acceptable since, in practice, all
measured signals have finite support; in principle, therefore, the DFT suf-
fices for the spectral characterization of real-world sequences. Since the
transform of a finite-length signal and its DTFT are related by (4.43) or by
(4.44) according to the underlying model for the infinite-length extension,
we can always use the DTFT to illustrate the fundamental concepts of spec-
tral analysis for the general case and then particularize the results for finite-
length sequences.

4.7.1 Plotting Spectral Data

The first question that we ask ourselves is how to represent spectral data.
Since the transform values are complex numbers, it is customary to sepa-
rately plot their magnitude and their phase; more often than not, we will
concentrate on the magnitude only, which is related to the energy distribu-
tion of the signal in the frequency domain.® For infinite sequences whose
DTFT can be computed exactly, the graphical representation of the trans-
form is akin to a standard function graph — again, the interest here is mostly
theoretical. Consider now a finite-length signal of length N; its DFT can be
computed numerically, and it yields a length- N vector of complex spectral
values. These values can be displayed as such (and we obtain a plain DFT
plot) or they can be used to obtain the DTFT of the periodic or finite-support
extension of the original signal.

Consider for example the length-16 triangular signal x[n] in Figure 4.15;
note in passing that the signal is symmetric according to our definition in
(4.74) so that its DFT is real. The DFT coefficients )X [k]) are plotted in Fig-
ure 4.16; according to the fact that x[n] is a real sequence, the set of DFT co-
efficients is symmetric (again according to (4.74)). The k-th DFT coefficient
corresponds to the frequency (27t/N)k and, therefore, the plot’s abscissa ex-
tends implicitly from 0 to 27; this is a little different than what we are used to
in the case of the DTFT, where we usually consider the [—7, 7] interval, but it
is customary. Furthermore, the difference is easily eliminated if we consider
the sequence of X[k] as being N-periodic (which it is, as we showed in Sec-
tion 4.3) and plot the values from —k /2 to k /2 for k even, or from —(k —1)/2
to (k —1)/2 for k odd.

@A notable exception is the case of transfer function for digital filters, in which phase
information is extremely important; we will study this in the next Chapter.
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Figure 4.15 Length-16 signal.
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Figure 4.16 Magnitude DFT (or, equivalently, one period of the DES) of the signal
in Figure 4.15.

This can be made explicit by considering the N-periodic extension of
x[n] and by using the DFS-DTFT relationship (4.23); the standard way to
plot this is as in Figure 4.17. Here the N pulse trains 6(w — (2m/N)k) are
represented as lines (or arrows) scaled by the magnitude of the correspond-
ing DFT coefficients. By plotting the representative [—7, 7r] interval, we can
appreciate, in full, the symmetry of the transform’s magnitude.

By considering the finite-support extension of x[n] instead, and by plot-
ting the magnitude of its DTFT, we obtain Figure 4.18. The points in the plot
can be computed directly from the summation defining the DTFT (which,
for finite-support signals only contains a finite number of terms) and by
evaluating the sum over a sufficiently fine grid of values for w in the [—7, 7]
interval; alternatively, the whole set of points can be obtained in one shot
from an FFT with a sufficient amount of zero-padding (this method will
be made precise later). Again, the DTFT of a finite-support extension is just a
smooth interpolation of the original DFT points and no new information is
added.
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Figure 4.17 Magnitude DTFT of the periodic extension of the signal in Figure 4.15.
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Figure 4.18 Magnitude DTFT of the finite-support extension of the signal in Fig-
ure 4.15. The Lagrange interpolation between DFT values is made apparent by the
lines in gray.

4.7.2 Computing the Transform: the FFT

The Fast Fourier Transform, or FFT, is not another type of transform but sim-
ply the name of an efficient algorithm to compute the DFT. The algorithm,
in its different flavors, is so ubiquitous and so important that the acronym
FFT is often used liberally to indicate the DFT (or the DFS, which would be
more appropriate since the underlying model is that of a periodic signal).

We have already seen in (4.6) that the DFT can be expressed in terms of
a matrix vector multiplication:

X=Wx

as such, the computation of the DFT requires a number of operations on
the order of N2. The FFT algorithm exploits the highly structured nature of
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W to reduce the number of operations to Nlog(N). In matrix form this is
equivalent to decomposing W into the product of a series of matrices with
mostly zero or unity elements. The algorithmic details of the FFT can be
found in the bibliography; we can mention, however, that the FFT algorithm
is particularly efficient for data lengths which are a power of 2 and that, in
general, the more prime factors the data length can be decomposed into,
the more efficient the FFT implementation.

4.7.3 Cosmetics: Zero-Padding

FFT algorithms are tailored to the specific length of the input signal. When
the input signal’s length is a large prime number or when only a subset of
FFT algorithms is available (when, for instance, all we have is the radix-2
algorithm, which processes input vectors with lengths of a power of 2) it is
customary to extend the length of the signal to match the algorithmic re-
quirements. This is usually achieved by zero padding, i.e. the length-N data
vector is extended to a chosen length M by appending (M — N) zeros to it.
Now, the maximum resolution of an N-point DFT, i.e. the separation be-
tween frequency components, is 27t/ N. By extending the signal to a longer
length M, we are indeed reducing the separation between frequency com-
ponents. One may think that this artificial increase in resolution allows the
DFT to show finer details of the input signal’s spectrum. It is not so.

The M-point DFT XM) of an N-point data vector X, obtained via zero-
padding, can be obtained directly from the “canonical” N-point DFT of the
vector X!V via a simple matrix multiplication:

XM =M, y XV (4.86)
where the M x N matrix My y is given by
M,y = W), WY

where Wy is the standard DFT matrix and W§VI is the M x N matrix obtained
by keeping just the first N columns of the standard DFT matrix Wy,. The
fundamental meaning of (4.86) is that, by zero padding, we are adding no
information to the spectral representation of a finite-length signal. Details
of the spectrum which were not apparent in an N-point DFT are still not
apparent in a zero-padded version of the same. It can be shown that (4.86)
is a form of Lagrangian interpolation of the original DFT samples; therefore
the zero-padded DFT is more attractive in a “cosmetic” fashion since the
new points, when plotted, show a smooth curve between the original DFT
points (and this is how plots such as the one in Figure 4.18 are obtained).
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4.7.4 Spectral Analysis

The spectrum is a complete, alternative representation of a signal; by ana-
lyzing the spectrum, one can obtain, at a glance, the fundamental informa-
tion, reguired to characterize and classify a signal in the frequency domain.

Magnitude The magnitude of a signal’s spectrum, obtained by the Fourier
transform, represents the energy distribution in frequency for the signal. It
is customary to broadly classify discrete-time signals into three classes:

o Lowpass (or baseband) signals, for which the magnitude spectrum is
concentrated around » = 0 and negligible elsewhere (Fig. 4.19).

e Highpass signals, for which the spectrum is concentrated around
w =1 and negligible elsewhere, notably around w = 0 (Fig. 4.20).
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Figure 4.19 Lowpass spectrum. Note in this and the following figures, the 27-
periodicity of the spectrum is made explicit (spectral replicas are plotted in gray).
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Figure 4.21 Bandpass spectrum.

o Bandpass signals, signals, for which the spectrum is concentrated
around w = +w), and negligible elsewhere, notably around w =0 and
w =7 (Fig. 4.21).

For real-valued signals, the magnitude spectrum is a symmetric function
and the above classifications take this symmetry into account. Remember
also, that all spectra of discrete-time signals are 27-periodic functions so
that the above definitions are to be interpreted in a 27-periodic fashion. For
once, this is made explicit in Figures 4.19 to 4.21 where the plotting range,
instead of the customary [—7, ] interval, is extended from —27 to 27.

Phase As we have stated before, the Fourier representation allows us to
think of any signal as the sum of the outputs of a (potentially infinite) num-
ber of sinusoidal generators. While the magnitude of the spectrum defines
the inherent power produced by each of the generators, its phase defines the
relative alignment of the generated sinusoids. This alignment determines
the shape of the signal in the discrete-time domain. To illustrate this with an
example, consider the following 64-periodic signal:(1?

- 3 1 (21 .
X[n] _;2i+1 sin (a(21+1)n+¢,~) (4.87)

(10 The signal is the sum of the first four terms of the canonical trigonometric expansion of
a square wave of period 64.
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The magnitude of its DFS X[k] is independent of the values of ¢; =0, i =
0,1,2,3, and it is plotted in Figure 4.22. If the phase terms are uniformly
zero, i.e. ¢; =0, i =0,1,2,3, X[n] is the discrete-time periodic signal plotted
in Figure 4.23; the alignment of the constituent sinusoids is such that the
“square wave” exhibits a rather sharp transition between half-periods and
a rather flat behavior over the half-period intervals. In addition, it should
be noted with a zero phase term, the periodic signal is symmetric and that
therefore the DFS coefficients are real. Now consider modifying the individ-
ual phases so that ¢; = 27i/3; in other words, we introduce a linear phase
term in the constituent sinusoids. While the DFS magnitude remains ex-
actly the same, the resulting time-domain signal is the one depicted in Fig-
ure 4.24; lack of alignment between sinusoids creates a “smearing” of the
signal which no longer resembles a square wave.
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Figure 4.22 Magnitude DFS of the signal in (4.87).
1 X[n] |

Figure 4.23 The signal in (4.87) with ¢; =0.
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Figure 4.24 The signal in (4.87) with ¢; =2mi/3.

4.8 Time-Frequency Analysis

Recall our example at the beginning of this Chapter, when we considered the
time and frequency information contained in a piece of music. We stated
that the melodic information is related to the frequency content of the sig-
nal; obviously this is only partially true, since the melody is determined not
only by the pitch values but also by their duration and order. Now, if we take
a global Fourier Transform of the entire musical piece we have a comprehen-
sive representation of the frequency content of the piece: in the resulting
spectrum there is information about the frequency of each played note.(!)
The time information, however, that is the information pertaining to the or-
der in which the notes are played, is completely hidden by the spectral rep-
resentation. This makes us wonder whether there exists a time-frequency
representation of a signal, in which both time and frequency information
are readily apparent.

4.8.1 The Spectrogram

The simplest time-frequency transformation is called the spectrogram. The
recipe involves splitting the signal into small consecutive (and possibly over-
lapping) length- N pieces and computing the DFT of each. What we obtain
is the following function of discrete-time and of a dicrete frequency index:

N-1
Stk,ml=">_"x[mM + i]wi¥ (4.88)
i=0

a0 Of course, even with the efficiency of the FFT algorithm, the computation of the DFT of
an hour-long signal is beyond practical means.
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where M, 1 < M < N controls the overlap between segments. In matrix
notation we have

x[0] x[M] x[2M]

x[1] x[M+1] x[2M +1]
S=Wy ' _ _ (4.89)

_x[N—l] xX[M+N—1] x[L]

The resulting spectrogram is therefore an N x |L/M| matrix, where L is the
total length of the signal x[n]. It is usually represented graphically as a plot
in which the x-axis is the discrete-time index m, the y-axis is the discrete
frequency index k and a color is the magnitude of S[k, m], with darker colors
for larger values.

As an example of the insight we can gain from the spectrogram, consider
analyzing the well-known Bolero by Ravel. Figure 4.25 shows the spectro-
gram of the initial 37 seconds of the piece. In the first 13 seconds the only
instrument playing is the snare drum, and the vertical line in the spectro-
gram represents, at the same time, the wide frequency content of a percus-
sive instrument and its rhythmic pattern: if we look at the spacing between
lines, we can identify the “trademark” drum pattern of Ravel’s Bolero. After
13 seconds, the flute starts playing the theme; this is identifiable in the dark
horizontal stripes which denote a high energy content around the frequen-
cies which correspond to the pitches of the melody; with further analysis
we could even try to identify the exact notes. The clarity of this plot is due to

ol

Figure 4.25 Spectrogram representation of the beginning of Ravel’s Bolero. DFT
size is 1024 samples, overlap is 512 samples.
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seconds

Figure 4.26 Spectrogram representation of the end of Ravel’s Bolero.

the simple nature of the signal; if we now plot the spectrogram of the last
20 seconds of the piece, we obtain Figure 4.26. Here the orchestra is playing
full blast, as indicated by the high energy activity across the whole spectrum;
we can only detect the onset of the rhythmic shouts that precede the final
chord.

4.8.2 The Uncertainty Principle

Each of the columns of S represents the “local” spectrum of the signal for
a time interval of length N. We can therefore say that the time resolution
of the spectrogram is N samples since the value of the signal at time ny in-
fluences the DFT of the N-point window around 7n,. Seen from another
point of view, the time information is “smeared” over an N-point interval.
At the same time, the frequency resolution of the spectrogram is 27t/N (and
we cannot increase it by zero-padding, as we have just shown). The con-
flict is therefore apparent: if we want to increase the frequency resolution
we need to take longer windows but in so doing, we lose the time localiza-
tion of the spectrogram; likewise, if we want to achieve a fine resolution in
time, the corresponding spectral information for each “time slice” will be
very coarse. It is rather easy to show that the amount of overlap does not
change the situation. In practice, we need to choose an optimal tradeoff
taking the characteristics of the signal into consideration.

The above problem, described for the case of the spectrogram, is actu-
ally a particular instance of a general uncertainty principle for time-
frequency analysis. The principle states that, independently of the analysis
tools that we put in place, we can never hope to achieve arbitrarily good res-
olution in both time and frequency since there exists a lower bound greater
than zero for the product of the localization measure in time and frequency.
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4.9 Digital Frequency vs. Real Frequency

The conceptual representation of discrete-time signals relies on the notion
of a dimensionless “time”, indicated by the integer index n. The absence of
a physical dimension for time has the happy consequence that all discrete-
time signal processing tools become indifferent to the underlying physical
nature of the actual signals: stock exchange values or sampled orchestral
music are just sequences of numbers. Similarly, we have just derived a fre-
quency representation for signals which is based on the notion of a dimen-
sionless frequency; because of the periodicity of the Fourier basis, all we
know is that 7 is the highest digital frequency that we can represent in this
model. Again, the power of generality is (or will soon be) apparent: a digital
filter which is designed to remove the upper half of a signal’s spectrum can
be used with any type of input sequence, with the same results. This is in
stark contrast with the practice of analog signal processing in which a half-
band filter (made of capacitors, resistors and other electronic components)
must be redesigned for any new class of input signals.

This dimensionless abstraction, however, is not without its drawbacks
from the point of view of hands-on intuition; after all, we are all very fa-
miliar with signals in the real world for which time is expressed in seconds
and frequency is expressed in hertz. We say, for instance, that speech has a
bandwidth up to 4 KHz, that the human ear is sensitive to frequencies up to
20 KHz, that a cell phone transmits in the GHz band, and so on. What does
“rm” mean in these cases? The precise, formal link between real-world sig-
nal and discrete-time signal processing is given by the Sampling Theorem,
which we will study later. The fundamental idea, however, is that we can
remove the abstract nature of a discrete-time signal (and, correspondingly,
of a dimensionless frequency) by associating a time duration to the interval
between successive discrete-time indices in the sequence.

Let us say that the “real-world” time between indices n and n+1in a
discrete-time sequence is T; seconds (where T is generally very small); this
can correspond to sampling a signal every T seconds or to generating a syn-
thetic sequence with a DSP chip whose clock cycle is T; seconds. Now, recall
that the phase increment between successive samples of a generic complex
exponential e/ ®o" is w, radians. The oscillation, therefore, completes a full
cycle in ng = (21/wo) samples. If Ty is the real-world time between samples,
the full cycle is completed in r( T; seconds and so its “real-world” frequency
is fo = 1/(noT;) hertz. The relationship between the digital frequency wq
and the “real” frequency fj in Hertz as determined by the “clock” period T
is therefore
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L 1 wo

Jfo — o T, (4.90)
S

In particular, the highest real frequency which can be represented in the
discrete-time system (which corresponds to w =) is

F
Enax= =

2

where we have used F; =(1/T;); F; is just the operating frequency of the dis-
crete time system (also called the sampling frequency or clock frequency).
With this notation, the digital frequency wy corresponding to a real fre-

quency fy is

wy=21T—
S

The compact disk system, for instance, operates at a frequency F; =
44.1 KHz; the maximum representable frequency for the system is 22.05 KHz
(which constitutes the highest-pitched sound which can be encoded on,
and reproduced by, a CD).

Example 4.1: The structure of DFT formulas

The DFT and inverse DFT (IDFT) formulas have a high degree of symmetry.
Indeed, we can use the DFT algorithm to compute the IDFT with just a little
manipulation: this can be useful if we have a “black box” FFT routine and
we want to compute an inverse transform.

In the space of length- N signals, indicate the DFT of a signal x as

X=[X[0] X[1] ... X[N—1]]" =DFT{x}
so that we can also write

DFT{x}[n] = X[n]
Now consider the time-reversed signal

X, =[X[N-1] X[N-2] .. x[1] x[0]]"

we can show that

x[n]:%WA’;-DFT{X,}[n]
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so that the inverse DFT can be obtained as the DFT of a time-reversed and
scaled version of the original DFT. Indeed, with the change of variable m =
(N —=1)—k, we have

=2
I

1
DFT{X,}[n]=Y X[(N—1)—k]e i ¥kn

pa
D

X[m] e—j%(N—l—m)n

23
Il
=]

j2n j2m, _i2n
X[m]eme”efN”e J N Nn

3
Il
o

N-1
—el¥n ZX[m]esznm” —el¥n -N-x[n]

m=0

Example 4.2: The DTFT of the step function

In the delta-function formalism, the Fourier transform of the unit signal
x[n] = 1 is the pulse train 6(w). Intuitively, the reasoning goes as follows:
the unit signal has the same value over its entire infinite, two-sided support;
nothing ever changes, there is not even the minutest glimpse of movement
in the signal, ergo its spectrum can only have a nonzero value at the zero
frequency. Recall that a frequency of zero is the frequency of dead quiet; the
spectral value at w = 0 is also known as the DC component (for Direct Cur-
rent), as opposed to a livelier AC (Alternating Current). At the same time, the
unit signal has a very large energy, an infinite energy to be precise; imagine
it as the voltage at the poles of a battery connected to a light bulb: to keep
the light on for all eternity (i.e. over Z) the energy must indeed be infinite.
Our delta function captures this duality very effectively, if not rigorously.
Now consider the unit step u[n]; this is a somewhat stranger entity since
it still possesses infinite energy and it still is a very quiet signal — except in
n = 0. The transition in the origin is akin to flipping a switch in the bat-
tery/light bulb circuit above with the switch remaining on for the rest of
(positive) eternity. As for the Fourier transform, intuitively we will still have
a delta in zero (because of the infinite energy) but also some nonzero values
over the entire frequency range because of the “movement” in n = 0. We
know that for |a| < 1 it is

DTFT 1

"uln] — ———
l—ae J/®

a

so that it is tempting to let a — 1 and just say

DTFT 22 1
un] — —
1—eJ®
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This is not quite correct; even intuitively, the infinite energy delta is missing.
To see what’s wrong, let us try to find the inverse Fourier transform of the
above expression; by using the substitution e/ = z and contour integration
on the unit circle we have

lfﬁ ejwn 1 z"  dz

un)l=— —, W= — 1
2r)_1—e™] 2r Jo1=-27" jz

Since there is a pole on the contour, we need have to use Cauchy’s principal
value theorem for the indented integration contour shown in Figure 4.27.

Im

Figure 4.27 Indented integration contour.

For n > 0 there are no poles other than in z = 1 and we can use the “half-
residue” theorem to obtain

n
f z dz=jn[Residueatz=1]=jn
c

,Z2—1
so that
R 1
u[n]=§ forn>0

For n < 0 there is a (multiple) pole in the origin; with the change of variable
v =z"1 we have

zh y—(n+1)
§ dz= § v
o z—1 o 1—-v

where C” is the same contour as C’ but oriented clockwise. Because of this
inversion it is

1
l][l’l]:—i forn<0
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In conclusion

3 1 ) +1/2 forn>0
1—e™/® —1/2 forn<0
But this is almost good! Indeed,
()= aln] +
ulnl=1a[n]+ -
2
so that finally the DTFT of the unit step is
U(e/®)= #+15(w) (4.91)
Cl-eie 2 '
and its magnitude is sketched in Figure 4.28.

-7 -1/2 0 /2 T

Figure 4.28 Magnitude spectrum for the unit step.

Further Reading

A nice engineering book on Fourier theory is The Fourier Transform and Its
Applications, by R. Bracewell (McGraw- Hill, 1999). A more mathematically
oriented textbook is Fourier Analysis, by T. W. Korner (Cambridge Univer-
sity Press, 1989), as is P. Bremaud’s book, Mathematical Principles of Signal
Processing (Springer, 2002).
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Exercise 4.1: DFT of elementary functions. Derive the formula for the
DFT of the length-N signal x[n] = cos((27t/N)Ln+ ¢).

Exercise 4.2: Real DFT. Compute the DFT of the length-4 signal x[n] =
{a,b,c,d}. For which values of a, b, ¢, d is the DFT real?

Exercise 4.3: Limits. What is the value of the limit
11m Z cos(wyn)
(in a signal processing sense)?
Exercise 4.4: Estimating the DFT graphically. Consider a length-64
signal x[n] which is the sum of the three sinusoidal signals plotted in the

following Figure (the signals are plotted as continuous lines just for clarity).
Compute the DFT coefficients X[k], kK =0,1,...,63.

3

A //\\/\ N

| \/ w&

Exercise 4.5: The structure of DFT formulas. Consider alength-N signal
x[n], N=0,...,N —1; what is the length- N signal y[n] obtained as

y[n]=DFT{DFT{x[n]}}

(i.e. by applying the DFT algorithm twice in a row)?

Exercise 4.6: Two DFTs for the price of one. When you compute the
DFT of an length-N real signal, your data contains N real values while the
DFT vector contains N complex values: there is clearly a redundancy of a
factor of two in the DFT vector, which is apparent when you consider its
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Hermitian symmetry (i.e. X[k] = X*[N — k]). You can exploit this fact to
compute the DFT of two real length- N signals for the price of one. This is
useful if you have a pre-packaged FFT algorithm which you want to apply to
real data.

Assume x[n] and y [n] are two length- N real signals. Build a complex signal
c[n]=x[n]+ jy[n] and compute its DFT C[k], k =0,1,..., N — 1. Show that

X[k] = % (CIK] + C*[N — k])

1
Y(k]= 77 (Clk] - C*[N - k])
J
where X[k] and Y[k] are the DFTs of x[n] and y[n], respectively.

Exercise 4.7: The Plancherel-Parseval equality. Let x[n] and y[n] be
two complex valued sequences and X(e/ %) and Y(e/%), their corresponding
DTFTs.

(a) Show that

1 . .
<x[n]»J/[n]> = % <X(e]w)) Y(e]w)>
where we use the inner products for ¢»(Z) and L, ([—7,7]), respec-
tively.

(b) What is the physical meaning of the above formula when x[n] =y [n]?

Exercise 4.8: Numerical computation of the DFT. Consider the signal
x(n) = cos(2m fyn). Compute and draw the DFT of the signal in N = 128
points, for

@ fo=21/128
b) fo=21/127

You can use any numerical package to do this. Explain the differences that
we can see in these two spectra.

Exercise 4.9: DTFT vs. DFT. Consider the following infinite non-periodic
discrete time signal:

0 n<o0
x[n]=41 0<nm<a
0 n=a
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(a) Compute its DTFT X(e/®).

We want to visualize the magnitude of X(e/¢) using a numerical package
(for instance, Matlab). Most numeric packages cannot handle continuous
sequences such as X(e/®); therefore we need to consider only a finite num-
ber of points for the spectrum.

(b) Plot 10,000 points of one period of |X(efa’)| (from 0 to 27) for a = 20.

The DTFT is mostly a theoretical analysis tool, and in many cases, we will
compute the DFT. Moreover, for obvious reasons, numeric computation pro-
grams as, Matlab, only compute the DFT. Recall that in Matlab we use the
Fast Fourier Transform (FFT), an efficient algorithm to compute the DFT.

(c) Generate a finite sequence x;[n] of length N = 30 such that x;[n] =
x[n] for n=1,...,N. Compute its DFT and plot its magnitude. Com-
pare it with the plot obtained in (b).

(d) Repeat now for different values of N = 50, 100, 1000. What can you
conclude?



Chapter 5

Discrete-Time Filters

The previous Chapters gave us a thorough overview on both the nature of
discrete-time signals and on the tools used in analyzing their properties. In
the next few Chapters, we will study the fundamental building block of any
digital signal processing system, that is, the linear filter. In the discrete-time
world, filters are nothing but procedures which store and manipulate math-
ematically the numerical samples appearing at their input and their out-
put; in other words, any discrete-time filter can be described procedurally
in the form of an algorithm. In the special case of linear and time-invariant
filters, such an algorithm can be concisely described mathematically by a
constant-coefficient difference equation.

5.1 Linear Time-Invariant Systems

In its most general form, a discrete-time system can be described as a black
box accepting a number of discrete-time sequences as inputs and produc-
ing another number of discrete-time sequences at its output.

In this book we are interested in studying the class of linear
time-invariant (LTI) discrete-time systems with a single input and a single
output; a system of this type is referred to as a filter. A linear time-invariant
system ~# can thus be viewed as an operator which transforms an input
sequence into an output sequence:

ylnl=#{x[nl}
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x[nl——m— # [——vlnl

Figure 5.1 A single-input, single-output discrete-time system (black-box view).

Linearity is expressed by the equivalence
H{axi1[n]+ Bxa[nl} = a#{x1[n]} + B {x2[nl} (5.1)

for any two sequences x;[n] and x,[n] and any two scalars a, f € C. Time-
invariance is expressed by

ylnl={x[n]} <= #{x[n—nol} =y[n—no (5.2)

Linearity and time-invariance are very reasonable and “natural” require-
ments for a signal processing system. Imagine a recording system: linear-
ity implies that a signal obtained by recording a violin and a piano playing
together is the same as the sum of the signals obtained recording the vio-
lin and the piano separately (but in the same recording room). Multi-track
recordings in music production are an application of this concept. Time in-
variance basically means that the system’s behavior is independent of the
time the system is turned on. Again, to use a musical example, this means
that a given digital recording played back by a digital player will sound the
same, regardless of when it is played.

Yet, simple as these properties, linearity and time-invariance taken to-
gether have an incredibly powerful consequence on a system’s behavior. In-
deed, a linear time-invariant system turns out to be completely character-
ized by its response to the input x[n] = 6 [n]. The sequence h[n] = #{6[nl}
is called the impulse response of the system and h[n] is all we need to know
to determine the system’s output for any other input sequence. To see this,
we know that for any sequence we can always write the canonical orthonor-
mal expansion (i.e. the reproducing formula in (2.18))

00

x[n] = Z x[k]6[n — k]

k=—00

and therefore, if we let 320{5[11]} = h[n], we can apply (5.1) and (5.2) to ob-
tain

yInl=s{xinl} = > x[klhln-k] (5.3)

k=—00
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5.2 Filtering in the Time Domain

The summation in (5.3) is called the convolution of sequences x[n] and h[n]

“yn

and is denoted by the operator “+” so that (5.3) can be shorthanded to
y[n]=x[n]*h[n]

This is the general expression for a filtering operation in the discrete-time
domain. To indicate a specific value of the convolution at a given time index
no, we may use the notation y[ng] = (x * h)[no]

5.2.1 The Convolution Operator

Clearly, for the convolution of two sequences to exist, the sum in (5.3) must
be finite and this is always the case if both sequences are absolutely summa-
ble. As in the case of the DTFT, absolute summability is just a sufficient
condition and the sum (5.3) can be well defined in certain other cases as
well.

Basic Properties. The convolution operator is easily shown to be linear
and time-invariant (which is rather intuitive seeing as it describes the be-
havior of an LTT system):

x[n]*(a-y[n]+B-wn])=a-x[n]*y[n]+B-x[n]*xwn] (5.4)
wln]=x[n]*y[n] < x[n]*xy[n—k]=w[n—k] (5.5)

The convolution is also commutative:
x[n]xy[n]=y[n]*x[n] (5.6)

which is easily shown via a change of variable in (5.3). Finally, in the case of
square summable sequences, it can be shown that the convolution is asso-
ciative:

(x[n]*h[n])*w[n]=x[n]*(h[n]*wn]) (5.7)

This last property describes the effect of connecting two filters 2 and # in
cascade and it states that the resulting effect is that of a single filter whose
impulse response is the convolution of the two original impulse responses.
As a corollary, because of the commutative property, the order of the two
filters in the cascade is completely irrelevant. More generally, a sequence of
filtering operations can be performed in any order.
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Please note that associativity does not necessarily hold for sequences
which are not square-summable. A classic counterexample is the following:
consider the three sequences

x[n]=u[n] the unit step
ylnl=0o[n]—-o[n—1] the first-difference operator
wln]=1 a constant signal

where clearly x[n], w[n] &{,(Z). It is easy to verify that

xnl*(y(nl* wln])=0
(xlnlxy[n)*wln) =1

Convolution and Inner Product. It is immediately obvious that, for two
sequences x[n] and h[n], we can write:

x[n]*h[n]= (h*[n—k],x[k])

that is, the value at index n of the convolution of two sequences is the in-
ner product (in ¢2(Z)) of the first sequence — conjugated,V time-reversed
and re-centered at n — with the input sequence. The above expression de-
scribes the output of a filtering operation as a series of “localized” inner
products; filtering, therefore, measures the time-localized similarity (in the
inner product sense, i.e. in the sense of the correlation) between the input
sequence and a prototype sequence (the time-reversed impulse response).

In general, the convolution operator for a signal is defined with respect
to the inner product of its underlying Hilbert space. For the space of N-
periodic sequences, for instance, the convolution is defined as

N-1

x[n]*yln]=>_ [k]7n— k] (5.8)
k=0
k=0
which is consistent with the inner product definition in (3.55). We will also

consider the convolution of DTFTs. In this case, since we are in the space of
2n-periodic functions of a real variable, the convolution is defined as

=

[n—k]y k] (5.9)

(MSince we consider only real impulse responses, the conjugation operator is in this case
redundant.
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X(e/®)xY(el®)= % (X*(e/ @), Y(e/9)) (5.10)
-1 X(e/ @y (el?)do (5.11)

2m )_ .
- f X(el?)Y (el @ N do (5.12)

2m )_ .

which is consistent with the inner product definition in (3.30).

5.2.2 Properties of the Impulse Response

As we said, an LTI system is completely described by its impulse response,
i.e. by h[n] =2#{6[nl}.

FIR vs IIR. Since the impulse response is defined as the transformation of
the discrete-time delta and since the delta is an infinite-length signal, the
impulse response is always an infinite-length signal, i.e. a sequence. The
nonzero values of the impulse response are usually called taps. Two distinct
cases are possibles:

o IIR filters: when the number of taps is infinite.

o FIR filters: when the number of taps is finite (i.e. the impulse re-
sponse is a finite-support sequence).

Note that in the case of FIR filters, the convolution operator entails only a
finite number of sums and products; if h[n] =0 for n < N and n > M, we
can invoke commutativity and rewrite (5.3) as

M-1

y[n1=>" hlklx[n - k)

k=N

Thus, convolution sums involving a finite-support impulse response are
always well defined.

Causality. A system is called causal if its output does not depend on fu-
ture values of the input. In practice, a causal system is the only type of
“real-time” system we can actually implement, since knowledge of the fu-
ture is normally not an option in real life. Yet, noncausal filters maintain a
practical interest since in some application (usually called “batch process-
ing”) we may have access to the entirety of a discrete-time signal, which has
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been previously stored on some form of memory support.?) A filter whose
output depends exclusively on future values of the input is called anticausal.

For an LTI system, causality implies that the associated impulse response
is zero for negative indices; this is the only way to remove all “future” terms
in the convolution sum (5.3). Similarly, for anticausal systems, the impulse
response must be zero for all positive indices. Clearly, between the strict
causal and anticausal extremes, we can have intermediate cases: consider
for example a filter .# whose impulse response is zero for n < —M with
M € N*. This filter is technically noncausal, but only in a “finite” way. If
we consider the pure delay filter 2, whose impulse response is

d[n]l=06[n—-1]

we can easily see that .Z can be made strictly causal by cascading M delays
in front of it. Clearly, an FIR filter is always causal up to a delay.

Stability. A system is called bounded-input bounded-output stable (BIBO
stable) if its output is bounded for all bounded input sequences. Again, sta-
bility is a very natural requirement for a filter, since it states that the out-
put will not “blow up” when the input is reasonable. Linearity and time-
invariance do not guarantee stability (as anyone who has ever used a hands-
free phone has certainly experienced).

A bounded sequence x[n] is one for which it is possible to find a finite
value L € R* so that |x[n]| < L for all n. A necessary and sufficient condition
for an LTT system .# to be BIBO stable is that its impulse response h[n] be
absolutely summable. The sufficiency of the condition is proved as follows:
if x[n] < L for all n, then we have

|y[nl|=|nlnl*xlnl|=| Y hlklxin—k]
k=—00
< > |nlkixln—kl| <L Y |hik]|
k=—00 k=—00

and the last term is finite if h[n] is absolutely summable. Conversely, as-
sume that h[n] is not absolutely summable and consider the signal

x[n] =sign(h[—n])

x[n] is clearly bounded, since it takes values only in {—1,0,+1}, and yet

00 o0

yl0]=(hxx)[0)= Y Rlklx[-k]= Y |hlk]|=00

k=—00 k=—00

@(Clearly, to have a discrete-time signal stored in memory, the signal must be a finite-
support sequence. If the support is sufficiently large, however, we can consider the sig-
nal as a full-fledged sequence.
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Note that in the case of FIR filters, the convolution sum only involves a
finite number of terms. As a consequence, FIR filters are always stable.

5.3 Filtering by Example - Time Domain

So far, we have described a filter from a very abstract point of view, and we
have shown that a filtering operation corresponds to a convolution with a
defining sequence called the impulse response. We now take a diametrically
opposite standpoint: we introduce a very practical problem and arrive at a
solution which defines an LTI system. Once we recognize that the solution
is indeed a discrete-time filter, we will be able to make use of the theoretical
results of the previous Sections in order, to analyze its properties.

Consider a sequence like the one in Figure 5.2; we are clearly in the pres-
ence of a “smooth” signal corrupted by noise, which appears as little wiggles
in the plot. Our goal is the removal of the noise, i.e. to smooth out the signal,
in order to improve its readability.

8
6
4 F 4
2

o

al T T "\ T T
100 200 300 \400 500

Figure 5.2 Noisy signal.

5.3.1 FIR Filtering

An intuitive and basic approach to remove noise from data is to replace each
point of the sequence x[n] by a local average, which can be obtained by
taking the average of the sample at n and its N — 1 predecessors. Each point
of the “de-noised” sequence can therefore be computed as

1 N-1
y[n]:NZx[n—k] (5.13)
k=0
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Figure 5.3 Moving averages for small values of N.
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Figure 5.4 Moving averages for large values of N.
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This is easily recognized as a convolution sum, and we can obtain the im-
pulse response of the associated filter by letting x[n] = §[n]; it is easy to see
that

1
1 = — for0<n<N
hin]= ~ o[n—k]j={ N (5.14)
k=0 0 forn<Oandn>N

The impulse response, as it turns out, is a finite-support sequence so the
filter that we have just built, is an FIR filter; this particular filter goes under
the name of Moving Average (MA) filter. The “smoothing power” of this filter
is dependent on the number of samples we take into account in the aver-
age or, in other words, on the length N of its impulse response. The filtered
version of the original sequence for small and large values of N is plotted
in Figures 5.3 and 5.4 respectively. Intuitively we can see that as N grows,
more and more wiggles are removed. We will soon see how to handle the
“smoothing power” of a filter in a precise, quantitative way. A general char-
acteristic of FIR filters, that should be immediately noticed is that the value
of the output does not depend on values of the input which are more than
N steps away; FIR filters are therefore finite memory filters. Another aspect
that we can mention at this point concerns the delay introduced by the fil-
ter: each output value is the average of a window of N input values whose
representative sample is the one falling in the middle; thus, there is a delay
of N/2 samples between input and output, and the delay grows with N.

5.3.2 IR Filtering

The moving average filter that we built in the previous Section has an ob-
vious drawback; the more we want to smooth the signal, the more points
we need to consider and, therefore, the more computations we have to per-
form to obtain the filtered value. Consider now the formula for the output
of alength-M moving average filter:

] M1
yM[n]ZMZx[n—k] (5.15)

k=0

We can easily see that

yulnl = "Ly st =11+ - aln]
= 2ypraln— 1]+ (1 - A)x[n]

where we have defined A = (M — 1)/M. Now, as M grows larger, we can
safely assume that if we compute the average over M — 1 or over M points,
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Figure 5.5 Moving averages for different values of A.
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Figure 5.6 Leaky integrator outputs for values of A close to one.
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the result is basically the same: in other words, for M large, we can say that
Ym-1[n] &~ yp[n]. This suggests a new way to compute the smoothed version
of a sequence in a recursive fashion:

yIn]=Ay[n—1]+(1 - A)x[n] (5.16)

This no longer looks like a convolution sum; it is, instead, an instance of
a constant coefficient difference equation. We might wonder whether the
transformation realized by (5.16) is still linear and time-invariant and, in
this case, what its impulse response is. The first problem that we face in ad-
dressing this question stems from the recursive nature of (5.16): each new
output value depends on the previous output value. We need to somehow
define a starting value for y[n] or, in system theory parlance, we need to set
the initial conditions. The choice which guarantees that the system defined
by (5.16) is linear and time-invariant corresponds to the requirement that
the system response to a sequence identically zero, be zero for all n; this re-
quirement is also known as zero initial conditions, since it corresponds to
setting y [n] =0 for n < Ny where Ny is some time in the past.

The linearity of (5.16) can now be proved in the following way : assume
that the output sequence for the system defined by (5.16) is y [n] when the
input is x[n]. It is immediately obvious that y; [n] = ay [n] satisfies (5.16) for
an input equal to ax[n]. All we need to prove is that this is the only solution.
Assume this is not the case and call y»[n] the other solution; we have

nlnl=2yln—-1]+1 - 2A)(ax[n])
yoln]=2Ays[n—1]+ (1 - A)(ax[n])

We can now subtract the second equation from the first. What we find is that
the sequence y;[n] — y2[n] is the system’s response to the zero sequence,
and therefore is zero for all n. Linearity with respect to the sum and time
invariance can be proven in exactly the same way.

Now that we know that (5.16) defines an LTI system, we can try to com-
pute its impulse response. Assuming zero initial conditions and x[n] = d[n],
we have

y[n]=0 forn<o0

y[0]=1-2

yll=01-22

y2l=(1-222 617

y[n]=(1-2)2"
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Figure 5.7 Impulse response (portion) of the leaky integrator for A =0.9.

so that the impulse response (shown in Figure 5.7) is
hin]=1-2)A"uln] (5.18)

The impulse response clearly defines an IIR filter and therefore the imme-
diate question is whether the filter is stable. Since a sufficient condition for
stability is that the impulse response is absolutely summable, we have

3 . 1— A|n+l
n;oo}h[nﬂzgggou—ﬂl_—w (5.19)

We can see that the above limit is finite for |A| < 1 and so the system is BIBO
stable for these values. The value of A (which is, as we will see, the pole
of the system) determines the smoothing power of the filter (Fig. 5.5). As
A — 1, the input is smoothed more and more as can be seen in Figure 5.6, at
a constant computational cost. The system implemented by (5.16) is often
called a leaky integrator, in the sense that it approximates the behavior of an
integrator with a leakage (or forgetting) factor A. The delay introduced by
the leaky integrator is more difficult to analyze than for the moving average
but, again, it grows with the smoothing power of the filter; we will soon see
how to proceed in order to quantify the delay introduced by IIR filters.

As we can infer from this simple analysis, IIR filters are much more del-
icate entities than FIR filters; in the next Chapters we will also discover that
their design is also much less straightforward and offers less flexibility. This
is why, in practice, FIR filters are the filters of choice. IIR filters, however,
and especially the simplest ones such as the leaky integrator, are extremely
attractive when computational power is a scarce resource.
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5.4 Filtering in the Frequency Domain

The above examples have introduced the notion of filtering in an opera-
tional and intuitive way. In order to make more precise statements on the
characteristics of a discrete-time filter we need to move to the frequency
domain. What does a filtering operation translate to in the frequency do-
main? The fundamental result of this Section is the convolution theorem for
discrete-time signals: a convolution in the discrete-time domain is equiva-
lent to a multiplication of Fourier transforms in the frequency domain. This
result opens up a very fruitful perspective on filtering and filter design, to-
gether with alternative approaches to the implementation of filtering de-
vices, as we will see momentarily.

5.4.1 LTl “Eigenfunctions”

Consider the case of a complex exponential sequence of frequency wy as the
input to a linear time-invariant system .7#’; we have
o0
%{e]won} — Z e]wokh[n _ k]

k=—00

— Z h[k] e @o(n=F)

k=—00
00
=efom N hlk]e ik
k=—00

= H(eJ®0)ei@on (5.20)

where H(e/®0) (i.e. the DTFT of h[n] at w = wy) is called the frequency re-
sponse of the filter at frequency wg. The above result states the fundamental
fact that complex exponentials are eigensequences® of linear-time invariant
systems. We notice the following two properties:

e Using the polar form, H(e/®0)= A e/%, and we can write:
H{el N} = A, ed(@on+bo)

i.e. the output oscillation is scaled in amplitude by Ay = |H(ef wo |, the
magnitude of the DTFT, and it is shifted in phase by 6, = £ H(e/“),
the phase of the DTFT.

®In continuous time, complex exponential functions are eigenfunctions of LTI system.
In discrete time we use the slightly less standard term eigensequences to indicate input
signal whose shape is not changed by a filtering operation.
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o Iftheinputto alinear time-invariant system is a sinusoidal oscillation,
the output is always be a sinusoidal oscillation at the same frequency
(or zero if H(e/®0) = 0). In other words, linear time-invariant systems
cannot shift or duplicate frequencies.®

5.4.2 The Convolution and Modulation Theorems

Consider two sequences x[n] and h[n], both absolutely summable. The
discrete-time Fourier transform of the convolution y [n] = x[n]* h[n] is

Y(e/®)=X(e!°)H(e!®) (5.21)

The proof is as follows: if we take the DTFT of the convolution sum, we have

Y(el®)= i i x[k)h[n—k]e /®"

n=—00 k=—00

and by interchanging the order of summation (which can be done because
of the absolute summability of both sequences) and by splitting the complex
exponential, we obtain

o0

Y(el®)= Z x[k] e Jwk Z h[n—k]e‘j“’(”_k)

k=—00 n=—00

from which the result immediately follows after a change of variable. Before
discussing the implications of the theorem, we to state and prove its dual,
which is called the modulation theorem.

Consider now the discrete-time sequences x[n] and w([n], both abso-
lutely summable, with discrete-time Fourier transforms X(e/®) and W(eJ®).
The discrete-time Fourier transform of the product y [n] = x[n]w[n] is

Y(el®9)=X(el )« W(el®) (5.22)

where the DTFT convolution is via the convolution operator for 27t-periodic
functions, defined in (5.12). This is easily proven as follows: we begin with
the DTFT inversion formula of the DTFT convolution:

1 (7 o
—J (X*xY)e!“)el® dw
2m )_

1 (T1 (7
=—f —f X(e/@=Ny(e/%) el dodw
2m)_ 2m )

@This strength is also a weakness in some applications and that is why sometimes non-
linear transformations are necessary.
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and we split the last integral to obtain

1 (" 1 (*
_ X(ej(w—cr))ej(w—cr)n dow _ y(eja)ejan do
27 . 27 _ﬁ

=x[n]y[n]
These fundamental results are summarized in Table 5.1.

Table 5.1 The convolution and modulation theorems.

Time Domain | Frequency Domain

x[n]xy[n] X(el®)Y(el®)

x[nly[n] X(el®)* Y(el®)

5.4.3 Properties of the Frequency Response

Since an LTI system is completely characterized by its impulse response, it
is also uniquely characterized by its frequency response. The frequency re-
sponse provides us with a different perspective on the properties of a given
filter, which are embedded in the magnitude and the phase of the response.

Just as the impulse response completely characterizes a filter in the
discrete-time domain, its Fourier transform, called the filter’s frequency re-
sponse, completely characterizes the filter in the frequency domain. The
properties of LTI systems are described in terms of their DTFTs magnitude
and phase, each of which controls different features of the system’s behav-
ior.

Magnitude. The most powerful intuition arising from the convolution
theorem is obtained by considering the magnitude of the spectra involved
in a filtering operation. Recall that a Fourier spectrum represents the energy
distribution of a signal in frequency; by appropriately “shaping” the magni-
tude spectrum of a filter’s impulse response we can easily boost, attenuate,
and even completely eliminate, a given part of the frequency content in the
filtered input sequence. According to the way the magnitude spectrum is
affected by the filter, we can classify filters into four broad categories (here
as before we assume that the impulse response is real, and therefore the as-
sociated magnitude spectrum is symmetric; in addition, the 27 periodicity
of the spectrum is implicitly understood):
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o Lowpass filters, for which the magnitude of the transform is concen-
trated around w = 0; these filters preserve the low- frequency energy
of the input signals and attenuate or eliminate the high-frequency
components.

o Highpass filters, for which the magnitude of the transform is concen-
trated around w = =%7; these filters preserve the high-frequency en-
ergy of the input signals and attenuate or eliminate the low-frequency
components.

o Bandpass filters, for which the magnitude of the transform is concen-
trated around w = +w); these filters preserve the energy of the input
signals around the frequency w, and attenuate the signals elsewhere,
notably around w =0 and w = %7.

o Allpass filters, for which the magnitude of the transform is a constant
over the entire [—, 7] interval. These filters do not affect their input’s
spectral magnitude (except for a constant gain factor) and they are
designed entirely in terms of their phase response (typically, to intro-
duce, or compensate for, a delay).

The frequency interval (or intervals) for which the magnitude of the fre-
quency response is zero (or practically negligible) is called the stopband.
Conversely, the frequency interval (or intervals) for which the magnitude
is non-negligible is called the passband.

Phase. The phase response of a filter has an equally important effect on
the output signal, even though its impact is less intuitive.

By and large, the phase response acts as a generalized delay. Consider
Equation (5.20) once more; we can see that a single sinusoidal oscillation
undergoes a phase shift equal to the phase of the impulse response’s Fourier
transform. A phase offset for a sinusoid is equivalent to a delay in the time
domain. This is immediately obvious in the case of a trigonometric function
defined on the real line since we can always write

cos(wt + ¢)=cos(w(t — o)), fo=——

For discrete-time sinusoids, it is not always possible to express the phase off-
set in terms of an integer number of samples (exactly for the same reasons
for which a discrete- time sinusoid is not always periodic in its index n); yet
the effect is the same, in that a phase offset corresponds to an implicit delay
of the sinusoid. When the phase offset for a complex exponential is not an
integer multiple of its frequency, we say that we are in the presence of a frac-
tional delay. Now, since each sinusoidal component of the input signal may
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be delayed by an arbitrary amount, the output signal will be composed of
sinusoids whose relative alignment may be very different from the original.
Phase alignment determines the shape of the signal in the time domain, as
we have seen in Section 4.7.4. A filter with unit magnitude across the spec-
trum, which does not affect the amplitude of the sinusoidal components,
but whose phase response is not linear, can completely change the shape of
a filtered signal.®

Linear Phase. A veryimportant type of phase response is linear phase:
£H(e/®)=—-wd (5.23)

Consider a simple system which just delays its input, i.e. y[n] = x[n — D]
with D € Z; this is obviously an LTI system with impulse response h[n] =
6[n — D] and frequency response H(e/®) = e~/©P. This means that, if the
value d in (5.23) is an integer, (5.23) defines a pure delay system; since the
magnitude is constant and equal to one, this is an example of an allpass
filter. If d is not an integer, (5.23) still defines an allpass delay system for
which the delay is fractional, and we should interpret its effect as explained
in the previous Section. In particular, if we think of the original signal in
terms of its Fourier reconstruction formula, the fractionally delayed output
is obtained by stepping forward the initial phase of all oscillators by a non-
integer multiple of the frequency. In the discrete-time domains, we have
a signal which takes values “between” the original samples but, since the
relative phase of any one oscillator, with respect to the others, has remained
the same as in the original signal, the shape of the signal in the time domain
is unchanged.
For a general filter with linear phase we can always write

H(el®)=|H(e/®)|e~T =4

In other words, the net effect of the linear phase filter is that of a cascade of
two systems: a zero-phase filter which affects only the spectral magnitude of
the input and therefore introduces no phase distortion, followed by a (pos-
sibly fractional) delay system (which, again, introduces just a delay but no
phase distortion).

Group Delay. When a filter does not have linear phase, it is important
to quantify the amount of phase distortion both in amount and in location.

®1In all fairness, the phase response of a system is not very important in most audio appli-
cations, since the human ear is largely insensitive to phase. Phase is however extremely
important in data transmission applications.
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Nonlinear phase is not always a problem; if a filter’s phase is nonlinear just
in the stopband, for instance, the actual phase distortion is negligible. The
concept of group delay is a measure of nonlinearity in the phase; the idea is
to express the phase response around any given frequency wg using a first
order Taylor approximation. Define p(w)= £ H(e/®) and approximate ((w)
around wg as ¢(wo+ 7) = p(wo) + T’ (wo); we can write

H(el(@ot)) = |H(ej(a>o+f))| el Plwott)

~ (}H(ef(w0+f))| ef@(wo)) el ¥ (@)t (5.24)

so that, approximately, the frequency response of the filter is linear phase for
at least a group of frequencies around a given wy. The delay for this group
of frequencies is the negative of the derivative of the phase, from which the
definition of group delay is

dx{H(el®)
 dow
For truly linear phase systems, the group delay is a constant. Deviations
from a constant value quantify the amount of phase distortion introduced
by a filter in terms of the (possibly non-integer) number of samples by wich
a frequency component is delayed.

grd{H(e/®)} = —p'(w) = (5.25)

5.5 Filtering by Example - Frequency Domain

Now that we know what to look for in a filter, we can revisit the “empirical”
de-noising filters introduced in Section 5.3. Both filters are realizable, in the
sense that they can be implemented with practical and efficient algorithms,
as we will study in the next Chapters. Their frequency responses allow us to
qualify and quantify precisely their smoothing properties, which we previ-
ously described, in an intuitive fashion.

Moving Average. The frequency response of the moving average filter
(Sect. 5.3.1) can be shown to be
; 1 sin(wN/2 -
H(el®)= — SIN(WN/2) _jxa, (5.26)
N sin(w/2)

In the above expression, it is easy to separate the magnitude and the phase,
which are plotted in Figure 5.8. The group delay for the filter is the constant
(N —1)/2, which means that the filter delays its output by (IV — 1)/2 samples
(i.e. there is a fractional delay for N even). This formalizes the intuition that
the “representative sample” for an averaging window of N samples is the
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Figure 5.8 Magnitude and phase response of the moving average filter for N = 8.

sample in the middle. If N is even, this does not correspond to a real sample
but to a “ghost” sample in the middle.

Leaky Integrator. The frequency response of the leaky integrator in Sec-
tion 5.3.2 is

. 1-4
H(e/Y)= —— 5.27
(/%) oo (5.27)
Magnitude and phase are, respectively,
Fon |2 (1-Ay
H(e!®)| = 5.28
| (e )| 1+ 22 —2Acos(w) (5-28)
. Asin(w)
AH(e!®)=arctan | ————— (5.29)
1—Acos(w)

and they are plotted in Figure 5.9. The group delay, also plotted in Figure 5.9,

is obtained by differentiating the phase response:
Acos(w)— A2

1+ A2 —2Acos(w)

grd{H(e/®)} = (5.30)
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The group delay indicates that, for the frequencies for which the magnitude
is not very small, the delay increases with the smoothing power of the filter.

Note that, according to the classification in Section 5.4.3, both the mov-
ing average and the leaky integrator are lowpass filters.

0.8 1
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(=)

T
- -21/3 -1/3 0 n/3 21/3 T

10 | 1

Group delay (samples)
@

0 — ~———

T
-7 -21/3 -1t/3 0 n/3 21/3 T

Figure 5.9 Magnitude and phase response of the leaky integrator for A =0.9.
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5.6 Ideadl Filters

The frequency characterization introduced in Section 5.4.3 immediately
leads to questions such as “What is the best lowpass filter?” or “Can I have a
highpass filter with zero delay?” It turns out that the answers to such ques-
tions are given by ideal filters. Ideal filters are what the (Platonic) name sug-
gests: theoretical abstractions which capture the essence of the basic filter-
ing operation but which are not realizable in practice. In a way, they are the
“gold standard” of filter design.

Ideal Lowpass. The ideal lowpass filter is a filter which “kills” all fre-
quency content above a cutoff frequency w. and leaves all frequency content
below w. untouched; it is defined in the frequency domain as

jo 1 |w|<w.
Hjp(e!?)= (5.31)
0 we<|lw|l<m

and clearly, the filter has zero phase delay. The ideal lowpass can also be
defined in terms of its bandwidth wj, = 2w.. The DTFT inversion formula
gives the corresponding impulse response:

__sin(w,n)

The impulse response is a symmetric infinite sequence and the filter is
therefore IIR; unfortunately, however, it can be proved that no realizable sys-
tem (i.e. no algorithm with a finite number of operations per output sample)
can exactly implement the above impulse response. More bad news: the de-
cay of the impulse response is slow, going to zero only as 1/n, and it is not

H(el®)

-7 -2m/3 -1/3 0 n/3 21/3 T

Figure 5.10 Frequency response of the ideal lowpass filter, w, = 7/3.
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Figure 5.11 Impulse response (portion) of the ideal lowpass filter, w, = 7/3.

absolutely summable; this means that any FIR approximation of the ideal
lowpass obtained by truncating k[n] needs a lot of samples to achieve some
accuracy and that, in any case, convergence to the ideal frequency response
is only in the mean square sense. An immediate consequence of these
facts is that, when designing realizable filters, we will take an entirely differ-
ent approach.

Despite these practical difficulties, the ideal lowpass and its associated
DTFT pair are so important as a theoretical paradigm, that two special func-
tion names are used to denote the above expressions. These are defined as
follows:

1 =172
rect(x) = (5.33)
0 |x|>1/2
sin(7x)
sinc)={ x . *7° (5.34)
1 x=0

Note that the sinc function is zero for all integer values of the argument ex-
cept zero. With this notation, and with respect to the bandwidth of the filter,
the ideal lowpass filter’s frequency response between —m and 7w becomes

Hjp(e!?)=rect (ﬂ) (5.35)
wp

(obviously 27t-periodized over all R). Its impulse response in terms of band-
width becomes

hipln]= 620—;; sinc (Z)—; n) (5.36)
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or, in terms of cutoff frequency,

w w
hipln]= —C sinc (—C n) (5.37)
T T
The DTFT pair:
w w w
i’} sinc (—b n) PT—F>T rect (—) (5.38)
27 27 wp

constitutes one of the fundamental relationships of digital signal process-
ing. Note that as wp — 27, we re-obtain the well-known DTFT pair o [n] < 1,
while as wj, — 0 we can re-normalize by (271/wp) to obtain 1 «— o(w).

Ideal Highpass. The ideal highpass filter with cutoff frequency w. is the
complementary filter to the ideal lowpass, in the sense that it eliminates all
frequency content below the cutoff frequency. Its frequency response is

: 0 |wlw
Hpp(el®)= o] = e (5.39)
1 w.<|wl<n

where the 27-periodicity is as usual implicitly assumed. From the relation
Hp(e/®)=1-rect(w/2w,.) the impulse response is easily obtained as

hupln]=06[n]— %sinc (% n)

Ideal Bandpass. The ideal bandpass filter with center frequency wy and
bandwidth wj, wp/2 < wq is defined in the frequency domain between —7
and 7 as

1 wo—wp/2<w = wo+ wp/2
Hpp(e/®)={1 —wo—wp/2>w>—wo+wy/2 (5.40)

0 elsewhere

where the 27-periodicity is, as usual, implicitly assumed. It is left as an ex-
ercise to prove that the impulse response is

hppln] :2cos(coon)ﬂsinc(ﬁ n) (5.41)
27 27

Hilbert Filter. The Hilbert filter is defined in the frequency domain as

; —-j 0fw<
H(el®y=] "/ 7=¢=T (5.42)
+j —nT<w<0
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Figure 5.12 Frequency and phase response of the Hilbert filter.

where the 27-periodicity is, as usual, implicitly assumed. Its impulse re-
sponse is easily computed as

_ 2sin’(zn/2) |0 for n even

hin
] nn —  for n odd
nmw

(5.43)

Clearly )H (el ‘“)| =1, so this filter is allpass. It introduces a phase shift of 77/2
in the input signal so that, for instance,

h[n]*cos(won)=sin(won) (5.44)

as one can verify from (4.39) and (4.40). More generally, the Hilbert filter is
used in communication systems to build efficient demodulation schemes,
as we will see later. The fundamental concept is the following: consider a
real signal x[n] and its DTFT X(eJ®); consider also the signal processed by
the Hilbert filter y [n] = h[n]*x[n]. This can be defined as

Alel®)= X(e/®) for0<w<m
0 for—-1<w<0
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Figure 5.13 Impulse response (portion) of the Hilbert filter.

i.e. A(e/®) is the positive-frequency part of the spectrum of x[n]. Since x[n]
is real, its DTFT has symmetry X(e/®) = X*(e~/®) and therefore we can write

X(e/?®)=A* (e ?)+A(e!?)
By separating the real and imaginary parts we can always write A(e/®) =
Ag(ei®)+ jA;(ei®) and so
X(e/®)=Ap(e™7?) = jAr(e™ )+ Ar(e )+ jA1(e]®)
For the filtered signal, we know that Y(e/®) = H(e/®)X(e/®) and therefore
Y(e/®)=jAr(e 1*)+Al(e™/*)— jAR(e!®)+ As(e!®)
It is, thus, easy to see that
x[n]+jy[n] palil 2A(e/®) (5.45)

i.e. the spectrum of the signal a[n] = x[n]+jy [n] contains only the positive-
frequency components of the original signal x[n]. The signal a[n] is called
the analytic signal associated to x[n].

5.7 Readlizable Filters

Contrary to ideal filters, realizable filters are LTI systems which can be im-
plemented in practice; this means that there exists an algorithm which com-
putes every output sample with a finite number of operations and using a
finite amount of memory storage. Note that the impulse response of a real-
izable filter need not be finite-support; while FIR filters are clearly realizable
we have seen at least one example of realizable IIR filter (i.e. the leaky inte-
grator).
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5.7.1 Constant-Coefficient Difference Equations

Let us consider (informally) the possible mathematical description of an LTT
system, seen as a “machine” which takes one input sample at a time and
produces a corresponding output sample. Linearity in the input-output re-
lationship implies that the description can involve only linear operations,
i.e. sums and multiplications by scalars. Time invariance implies that the
scalars be constants. Finally, realizability implies that, inside the above men-
tioned “machine”, there can be only a finite number of adders and multipli-
ers (and, correspondingly, a finite number of memory cells). Such a mathe-
matical relationship goes under the name of constant-coefficient difference
equation (CCDE).

In its most general form, a constant-coefficient difference equation de-
fines a relationship between an input signal x[n] and an output signal y[n]
as

N-1 M-1
D aryln—kl=Y_ bexln -k (5.46)
k=0 k=0

In the rest of this book we restrict ourselves to the case in which all the co-
efficients ay and by are real. Usually, ag =1, so that the above equation can
easily be rearranged as

M-1 N-1
y[n]=2bkx[n—k]—2aky[n—k] (5.47)
k=0 k=1

Clearly, the above relation defines each output sample y[n] as a linear com-
bination of past and present input values and past output values. However,
it is easy to see that if ay_; # 0 we can for instance rearrange (5.46) as

M-1 N-2
yIn=N+11=Y bixln-kl- Y ajyln—kl
k=0 k=0

where a} = ay/an-1 and b = by/ay-1. With the change of variable m =
n — N +1, this becomes

N-1 N-1

yiml= > bixlm+kl-> ajylm+k] (5.48)
k=N-M k=1

which shows that the difference equation can also be computed in another
way, namely by expressing y[m] as a linear combination of future values
of input and output. It is rather intuitive that the first approach defines a
causal behavior, while the second approach is anticausal.
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5.7.2 The Algorithmic Nature of CCDEs

Contrary to the differential equations used in the characterization of cont-
inuous-time systems, difference equations can be used directly to translate
the transformation operated by the system into an explicit algorithmic form.
To see this, and to gain a lot of insight into the properties of difference equa-
tions, it may be useful to consider a possible implementation of the system
in (5.47), shown as a C code sample in Figure 5.14.

extern double a[N]; // The a's coefficients
extern double b[M]; // The b’'s coefficients
static double x[M]; // Delay line for x
static double y[N]; // Delay line for y
double GetOutput(double input)
{
int k;
// shift delay line for x:
for (k = M-1; k > 0; k--)
x[k] = x[k-1];
// new input value x[n]:
x[0] = input;
// Shift delay line for y:
for (k = N-1; k > 0; k--)
ylk]l = yl[k-1];
double y = 0;
for (k = 0; k < M; k++)
y += b[k] * x[k];
for (k = 1; k < N; kt++)
y -= a[k] * y[k];
// New value for y[n]; store in delay line
return (y[0] = y);
}

Figure 5.14 C code implementation of a generic CCDE.

It is easy to verify that
¢ the routine effectively implements the difference equation in (5.47);

o the storage required is (N + M);
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e each output sample is obtained via (N + M — 1) multiplications and
additions;

o the transformation is causal.

If we try to compile and execute the code, however, we immediately run into
an initialization problem: the first time (actually, the first max(N, M — 1)
times) we call the function, the delay lines which hold past values of x[#n]
and y[n] will contain undefined values. Most likely, the compiler will no-
tice this condition and will print a warning message signaling that the static
arrays have not been properly initialized. We are back to the problem of
setting the initial conditions of the system. The choice which guarantees
linearity and time invariance is called the zero initial conditions and cor-
responds to setting the delay lines to zero before starting the algorithm. This
choice implies that the system response to the zero sequence is the zero se-
quence and, in this way, linearity and time invariance can be proven as in
Section 5.3.2.

5.7.3 Filter Analysis and Design

CCDE:s provide a powerful operational view of filtering; in very simple case,
such as in Section 5.3.2 or in the case of FIR filters, the impulse response
(and therefore its frequency response) can be obtained directly from the fil-
ter’s equation. This is not the general case however, and to analyze a generic
realizable filter from its CCDE, we need to be able to easily derive the trans-
fer function from the CCDE. Similarly, in order to design a realizable filter
which meets a set of requirement, we need to devise a procedure which
“tunes” the coefficients in the CCDE until the frequency response is satis-
factory while preserving stability; in order to do this, again, we need a con-
venient tool to link the CCDE to the magnitude and phase response. This
tool will be introduced in the next Chapter, and goes under the name of
z-transform.

Example 5.1: Radio transmission

AM radio was one of the first forms of telecommunication and remains to
this day a ubiquitous broadcast method due to the ease with which a robust
receiver can be assembled. From the hardware point of view, an AM trans-
mitter uses a transducer (i.e. a microphone) to convert sound to an electric
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signal, and then modulates this signal into a frequency band which corre-
spond to a region of the electromagnetic spectrum in which propagation is
well-behaved (see also Section 12.1.1). An AM receiver simply performs the
reverse steps. Here we can neglect the physics of transducers and of anten-
nas and concentrate on an idealized digital AM transmitter.

-7 0 wp/2 T

21 3n

AR AN

-3n -271 - —We 0

Figure 5.15 AM modulation; original baseband signal (top panel); modulated
bandpass signal (middle panel); bandpass signal with explicit spectral repetitions
(bottom panel).

Modulation. Suppose x[n]is areal, discrete-time signal representing voice
or music. Acoustic signals are a type of lowpass (or baseband) signal; while
good for our ears (which are baseband receivers) baseband signals are not
suitable for direct electromagnetic transmission since propagation in the
baseband is poor and since occupancy of the same band would preclude the
existence of multiple radio channels. We need to use modulation in order to
shift a baseband signal in frequency and transform it into a bandpass signal
prior to transmission. Modulation is accomplished by multiplying the base-
band signal by an oscillatory carrier at a given center frequency; note that
modulation is not a time-invariant operation. Consider the signal

y[n]=Re{x[n]ei®n}
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where w, is the carrier frequency. This corresponds to a cosine modulation
since

y[n]=x[n]cos(w,n)

and (see (4.56)):
Y(el®)= % [X(ef(w—wc)) +X(ef(“’+“’c))]

The complex signal c[n] = x[n]e/®" is called the complex bandpass sig-
nal and, while not transmissible in practice, it is a very useful intermediate
representation of the modulated signal especially in the case of Hilbert de-
modulation.

Assume that the baseband signal has spectral support [—wp/2, wp/2]
(i.e. assume that its energy is zero for |w| > wp/2); a common way to express
this concept is to say that the bandwidth of the baseband signal is wj,. What
is the maximum carrier frequency w. that we can use to create a bandpass
signal? If we look at the effect of modulation on the spectrum and we take
into account its 27r-periodicity as in Figure 5.15 we can see that if we choose
too large a modulation frequency the positive passband overlaps with the
negative passband of the first repetition. Intuitively, we are trying to mod-
ulate too fast and we are falling back into the folding of frequencies larger
than 27t which we have seen in Example 2.1. In our case the maximum fre-
quency of the modulated signal is w .+ wy /2. To avoid overlap with the first
repetition of the spectrum, we must guarantee that:

w
we+ 7” <r (5.49)

which limit the maximum carrier frequency to w, < 7w — wy/2.

Demodulation. An AM receiver must undo the modulation process; again,
assume we're entirely in the discrete-time domain. The first step is to iso-
late the channel of interest by using a sharp bandpass filter centered on
the modulation frequency w, (see also Exercise 5.7). Neglecting the impair-
ments introduced by the transmission (noise and distortion) we can initially
assume that after filtering the receiver possesses an exact copy of the mod-
ulated signal y [n]. The original signal x[n] can be retrieved in several ways;
an elegant scheme, for instance, is Hilbert demodulation. The idea behind
Hilbert demodulation is to reconstruct the complex bandpass signal c[#]
from y[n] as c[n] = y[n]+j (h[n]*y[n]) where h[n] is the impulse response
of the Hilbert filter as given in (5.43). Once this is done, we multiply c[n] by
the complex exponential e~/@<" and take the real part. This demodulation
scheme will be studied in more detail in Section 12.3.1.



Discrete-Time Filters 139

A more classic scheme involves multiplying y[n] by a sinusoidal carrier at
the same frequency as the carrier and filtering the result with a lowpass filter
with cutoff at wy, /2. After the multiplication, the signal is

uln]=yln]cosw.n
=x[n]cos® wen

1
=—x[n]+=x[n]cos2w.n
5 xln]+ 5 x[n]cos 20,

and the corresponding spectrum is therefore

; 1 ; 1 . .
Ue/®)= 5 X(e!*)+ n [X(ef(“”rz“”)) +X(ef(°"_2“’0))]

I |

U
-3 -21 —2wc -1 0

T T T T
o 2Wc 2n
Figure5.16 Spectrum of the AM demodulated signal u[n], with explicit repetitions

(the light gray spectral components are the sidebands from the repetitions at +4r);
the dashed lowpass filter response selects the baseband signal.

3

This spectrum is shown in Figure 5.16, with explicit repetitions; note that if
the maximum frequency condition in (5.49) is satisfied, the components at
twice the carrier frequency that may leak into the [—, 7] interval from the
neighboring spectral repetitions do not overlap with the baseband. From
the figure, if we choose

H(efw)={2 ol < wp/2

0 otherwise

then X(e/®) = H(e/®)U(e/®) = X(e/®). The component at w = 2w, is fil-
tered out and thus the spectrum of the demodulated signal is equal to the
spectrum of the original signal. Of course the ideal low-pass is in practice
replaced by a realizable IIR or an FIR filter with adequate properties.
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Figure 5.17 Schematics for a galena radio receiver (from Gernsback’s book “Radio
For All", 1922).

Finally, for the fun of it, we can look at a “digital galena” demodulator. Galena
receivers (whose general structure is shown in Figure 5.17) are the simplest
(and oldest) type of radio receiver: the antenna and the tuning coil form a
variable LC bandpass filter to select the band while a galena crystal, touched
by a thin metal wire called the “cat’s whisker”, acts as a rectifying nonlinear-
ity. A pair of high-impedance headphones is connected between the cat’s
whisker and ground; the mechanical inertia of the headphones acts as a
simple lowpass filter which completes the radio receiver. In a digital sim-
ulation of a galena receiver, the antenna and coil are replaced by our sharp
digital bandpass filter, at the output of which we find y [n]. The rectified sig-
nal at the cat’s whisker can be modeled as y,[n] = |y [n] |; since y,[n] is posi-
tive, the integration realized by the crude lowpass in the headphone can re-
veal the baseband envelope and eliminate most of the high frequency con-
tent. The process is best understood in the time domain and is illustrated
in Figure 5.18. Note that, spectrally, the qualitative effect of the nonlinearity
is indeed to bring the bandpass component back to baseband; as for most
nonlinear processing, however, no simple analytical form for the baseband
spectrum is available.

Example 5.2: Can IIRs see the future?

If we look at the bottom panel of Figure 5.9 we can notice that the group
delay is negative for frequencies above approximately /7. Does that mean
that we can look into the future?

(Hint: no.)
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Figure 5.18 Galena demodulation in the time domain; original signal x[n] (top
panel); modulated bandpass signal y [n] (second panel); rectified signal y,[n] (third
panel); lowpass-filtered envelope at the headphones (bottom panel).



142 Examples

To see what we mean, consider the effect of group delay on a narrowband
signal x[n] centered at wy; a narrowband signal can be easily constructed
by modulating a baseband signal s[n] (i.e. a signal so that S(e/®) = 0 for
|w| > wp and wy, very small). Set

x[n]=s[n]cos(won)

and consider a real-valued filter H(e/®) such that for = small itis )H (e (w0+7))|
~ 1 and the antisymmetric phase response is

Zer[(ej(woﬂ)) =0-gut
AH(e/Ct)) =—0 4 g47
clearly the group delay of the filter around wg is g4. If we filter the nar-

rowband signal x[n] with H(e/®), we can write the DTFT of the output for
0<w<mas

Y(el®)= X(el®) el (0—8al@=wo)

since, even though the approximation for H(e/“)holds only in a small neigh-
borhood of wg, X(e/®) is zero everywhere else so “we don't care”. If we write
out the expression for the full spectrum we have

Y(e/®)= 2 [§(el-en) eiO-galw-wn) 4 g(ilwten) oi(-0+gu(o-wo)]

[S(ej(“’_“"’)) el +S(ej(w+wo)) e—jfi)] e j8aw

N = DN =

where we have put ¢ = 0 + g4w,. We can recognize by inspection that the
first term is simply s[#n] modulated by a cosine with a phase offset of ¢; the
trailing linear phase term is just a global delay. If we assume g is an integer
we can therefore write

ynl=s[n—galcos(nwy+0) (5.50)

so that the effect of the group delay is to delay the narrowband envelope by
exactly g4 samples. The analysis still holds even if g; is not an integer, as
we will see in Chapter 9 when we deal with fractional delays.

Now, if g4 is negative, (5.50) seems to imply that the envelope s[#n] is ad-
vanced in time so that a filter with negative group delay is able to produce a
copy of the input before the input is even applied; we would have a time ma-
chine which can look into the future! Clearly there must something wrong
but the problem cannot be with the filter since the leaky integrator is an
example of a perfectly realizable filter with negative group delay in the stop-
band. In fact, the inconsistency lies with the hypothesis of having a perfectly
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narrowband signal: just like the impulse response of an ideal filter is neces-
sarily an infinite two-sided sequence, so any perfectly narrowband signal
cannot have an identifiable “beginning”. When we think of “applying” the
input to the filter, we are implicitly assuming a one-sided (or, more likely,
a finite-support) signal and this signal has nonzero spectral components at
all frequencies. The net effect of these is that the overall delay for the signal
will always be nonnegative.

Further Reading

Discrete-time filters are covered in all signal processing books, e.g. a good
review is given in Discrete-Time Signal Processing, by A. V. Oppenheim and
R. W. Schafer (Prentice-Hall, last edition in 1999).

Exercises

Exercise 5.1: Linearity and time-invariance - I. Consider the trans-
formation s#{x[n]} = nx[n]. Does 2 define an LTI system?

Exercise 5.2: Linearity and time-invariance - Il. Consider a discrete-
time system #{-}. When the input is the signal x[n] = cos((27t/5)n), the
output is 2#{x[n]} = sin((r/2)n). Can the system be linear and time-
invariant? Explain.

Exercise 5.3: Finite-support convolution. Consider the finite-support
signal h[n] defined as

1 for|n|<M
hin]=
0 otherwise

(a) Compute the signal x[n] = h[n]*h[n] for M = 2 and sketch the result.

(b) Compute the DTFT of x[n], X(e/«), and sketch its value in the interval
[0, ].

(c) Give a qualitative description of how |X(ef “))| changes as M grows.

(d) Compute the signal y[n] =x[n]*h[n] for M =2 and sketch the result.
For a general M, is the behavior of the sequence y[n]? (E.g. is it linear
in n? Is it quadratic?)

(e) ComputeY(e/®)and sketch its value.
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Exercise 5.4: Convolution - |. Let x[n] be a discrete-time sequence de-
fined as

M—n 0<n<M
x[nl=1M+n -M<n<o0
0 otherwise

for some odd integer M.

(a) Show that x[n] can be expressed as the convolution of two discrete-
time sequences x;[n] and x,[n].

(b) Using the previous results, compute the DTFT of x[n].

Exercise 5.5: Convolution - Il. Consider the following discrete-time sig-
nals:

x[n]=cos(1.5n)
1 . n
yln]= gsmc (E)

Compute the convolution: (x[n])2 xy[n]

Exercise 5.6: System properties. Consider the following input-output
relations and, for each of the underlying systems, determine whether the
system is linear, time invariant, BIBO stable, causal or anti-causal. Charac-
terize the eventual LTI systems by their impulse response.

@ yln]=x[-n].
(b) y[n]=e-7o"x[n].

n+ng

© ylnl= Y xlkl.

k=n—nyg

(d) y[n]=ny[n—1]+x[n], such thatif x[n] =0 for n < ng, then y[n] =0
for n < ny.

Exercise 5.7: ldeal filters. Derive the impulse response of a bandpass
filter with center frequency wy and passband wp:
1 wy—wp/2<w<wo+wp/2
pr(ej”) =141 —wog—wp/2>w>—wy+ wp/2

0 elsewhere



Discrete-Time Filters 145

(Hint: consider the following ingredients: a cosine of frequency wy, a low-
pass filter of bandwidth wj and the modulation theorem.)

Exercise 5.8: Zero-phase filtering. Consider an operator # which turns
a sequence into its time-reversed version:
#{x[n)} =x[—n]
(a) The operator is clearly linear. Show that it is not time-invariant.

Suppose you have an LTI filter »# with impulse response h[n] and you per-
form the following sequence of operations in the followin order:

sln]=2#{x[nl}
rin]l=%{s[nl}

wln]=2#{r[n]}
ylnl=2{w(n]}

(b) Show that the input-output relation between x[n] and y[rn] is an LTI
transformation.

(c) Give the frequency response of the equivalent filter realized by the se-
ries of transformations and show that it has zero phase.

Exercise 5.9: Nonlinear signal processing. Consider the system ¢
implementing the input-output relation y[n] = 2#{x[n]} = x?[n].

(a) Prove by example that the system is nonlinear.
(b) Prove that the system is time-invariant.

Now consider the following cascade system:

yin]

N
<
S,

x[n] I

where ¥ is the following ideal highpass filter:

G(e/®) = 0 for|w|<m/2

2 otherwise
(as per usual, G(e/ ) is 27t-periodic - i.e. prolonged by periodicity outside of
[—7, 7]). The output of the cascade is therefore v[n] = ¥ { ¢ {x[n]}}.
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(c) Compute v[n] when x[n] = cos(won) for wo = 37/8. How would you
describe the transformation operated by the cascade on the input?

7
(d) Compute v[n] as before, with now wg = ?ﬂ

Exercise 5.10: Analytic signals and modulation. In this exercise we
explore a modulation-demodulation scheme commonly used in data trans-
mission systems. Consider two real sequences x[n] and y[n], which repre-
sent fwo data streams that we want to transmit. Assume that their spectrum
is of lowpass type, i.e. X(e/®) = Y(e/®) =0 for |w| > w.. Consider further the
following derived signal:

cln]=x[n]+jyln]
and the modulated signal:
r[n]=cln]e/®n, We < wo<T— W

(a) Set w, = m/6, wo = m/2 and sketch }R(ef ‘“)| for whatever shapes you
choose for X(e/®), Y(e/«). Verify from your plot that r[n] is an analytic
signal.

The signal r[n] is called a complex bandpass signal. Of course it cannot be
transmitted as such, since it is complex. The transmitted signal is, instead,

s[n]=Re{r[n]}

This modulated signal is an example of Quadrature Amplitude Modulation
(QAM).

(b) Write out the expression for s[n] in terms of x[n], y [n]. Now you can
see the reason behind the term QAM, since we are modulating with
two carriers in quadrature (i.e. out of phase by 90 degrees).

Now we want to recover x[n] and y[n] from s[n]. To do so, follow these
steps:

(c) Show that s[n]+ j(h[n]*s[n]) =r[n], where h[n] is the Hilbert filter.
In other words, we have recovered the analytic signal r[n] from its real
part only.

(d) Once you have r[n], show how to extract x[n] and y[n].
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The Z-Transform

Mathematically, the z-transform is a mapping between complex sequences
and analytical functions on the complex plane. Given a discrete-time signal
x[n], the z-transform of x[n] is formally defined as the complex function of
a complex variable z € C

o0
X(z)=Z{x[n]} = Z x[n]z™" (6.1)
n=-—00

Contrary to the Fourier transform (as well as to other well-known trans-
forms such as the Laplace transform or the wavelet transform), the z-trans-
form is not an analysis tool per se, in that it does not offer a new physical
insight on the nature of signals and systems. The z-transform, however, de-
rives its status as a fundamental tool in digital signal processing from two

key features:

¢ Its mathematical formalism, which allows us to easily solve constant-
coefficient difference equations as algebraic equations (and this was
precisely the context in which the z-transform was originally inv-
ented).

o Its close association to the DTFT, which provides us with easy stabil-
ity criteria for the design and the use of digital filters. (It is evident
that the z-transform computed on the unit circle, i.e. for z = e/, is
nothing but the DTFT of the sequence).

Probably the best approach to the z-transform is to consider it as a
clever mathematical transformation which facilitates the manipulation of
complex sequences; for discrete-time filters, the z-transform bridges the al-
gorithmic side (i.e. the CCDE) to the analytical side (i.e. the spectral proper-
ties) in an extremely elegant, convenient and ultimately beautiful way.
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6.1 Filter Analysis

To see the usefulness of the z-transform in the context of the analysis and
the design of realizable filters, it is sufficient to consider the following two
formal properties of the z-transform operator:

e Linearity: given two sequences x[n] and y[n] and their respective
z-transforms X(z) and Y(z), we have

Z{ax[n]+Bynl}=aX(z)+BY(z)
o Time-shift: given a sequence x[n] and its z-transform X(z), we have
Z{x[n—N}=z""X(z)
In the above, we have conveniently ignored all convergence issues for the

z-transform; these will be addressed shortly but, for the time being, let us
just make use of the formalism as it stands.

6.1.1 Solving CCDEs

Consider the generic filter CCDE (Constant-Coefficient Difference Equation)
in (5.46):

M-1 N-1
yInl=> bexln—k1= > aryln—k
k=0 k=1

If we apply the z-transform operator to both sides and exploit the linearity
and time-shifting properties, we have

M-1 N-1
Y(z)= Z brz % X(z)— Z arz ¥ Y(2) (6.2)
k=1

k=0

=0 () 6.3)

= H(2)X(z) (6.4)

H(z) is called the transfer function of the LTI filter described by the CCDE.
The following properties hold:
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o The transfer function of a realizable filter is a rational transfer function
(i.e. aratio of finite-degree polynomials in z).

o The transfer function evaluated on the unit circle is the frequency re-
sponse of the filter. In other words, the z-transform gives us the pos-
sibility of obtaining the frequency response of a filter directly from the
underlying CCDE; in a way, we will no longer need to occupy ourselves
with the actual impulse response.

e The transfer function is the z-transform of the filter’s impulse response
(which follows immediately from the fact that the impulse response is
the filter’s output when the input is x[n] = §[n] and that Z{6[n]}
=1).

e The result in (6.4) can be extended to general sequences to yield a
z-transform version of the convolution theorem. In particular, given
the square-summable sequences x[n] and h[n] and their convolution
y[n]=x[n]* h[n], we can state that

Z{y[nl} =Y(2)=X(2)H(z) (6.5)

which can easily be verified using an approach similar to the one used
in Section 5.4.2.

6.1.2 Causality

As we saw in Section 5.7.1, a CCDE can be rearranged to express either a
causal or a noncausal realization of a filter. This ambiguity is reflected in the
z-transform and can be made explicit by the following example. Consider
the sequences

x1[n]=uln] (6.6)
x2[n]=0[n] — u[-n] (6.7)

where u[n] is the unit step. For the first sequence we have

Xi(x) = Z =T (6.8)

(again, let us neglect convergence issues for the moment). For the second
sequence we have

Xx)==)» z'=1- = — (6.9
— 1-z 1-z
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so that, at least formally, X;(z) = X,(z). In other words, the z-transform is
not an invertible operator or, more precisely, it is invertible up to a causality
specification. If we look more in detail, the sum in (6.8) converges only for
|z| > 1 while the sum in (6.9) converges only for |z| < 1. This is actually a
general fact: the values for which a z-transform exists define the causality
or anticausality of the underlying sequence.

6.1.3 Region of Convergence

We are now ready to address the convergence issues that we have put aside
so far. For any given sequence x[n], the set of points on the complex plane
for which ) x[n]z=" exists and is finite, is called the region of convergence
(ROQ) for the z-transform. In order to study the properties of this region, it
is useful to split the sum in (6.1) as

-1 M
X(z) = Z x[n]z‘"—i—Zx[n]z‘” (6.10)
n=—N n=0
N ) M x[n]
=) xlnlz"+> = 6.11)
n=1 n=0 z
= X,(2)+ Xeo(z2) (6.12)

where N, M > 0 and where both N and M can be infinity. Now, for X(z)
to exist and be finite, both power series X,(z) and X.(z) must converge in
zo; since they are power series, when they do converge, they converge ab-
solutely. As a consequence, for all practical purposes, we define the ROC in
terms of absolute convergence:(

z €ROC{X(z)} < i )x[n]z‘"| <0 (6.13)

n=—oo

Then the following properties are easily derived:

e The ROC has circular symmetry. Indeed, the sum in (6.13) depends
only on the magnitude of z; in other words, if zop € ROC, then the set
of complex points {z | |z| = |zo|} is also in the ROC, and such a set
defines a circle.

e The ROC for a finite-support sequence is the entire complex plane (with
the possible exception of zero and infinity). For a finite-support se-

(DThis definition excludes the points on the boundary of the ROC from the ROC itself, but
this has no consequence on the results we will derive and use in what follows.
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quence, both N and M in (6.10) are finite. The z-transform is there-
fore a simple polynomial which exists and is finite for all values of z
(except for z=0if N >0 and/or z =00 if M > 0).

e The ROC for a causal sequence is a circularly symmetric region in the
complex plane extending to infinity (Fig. 6.1a). For a causal sequence,
M = oo while N is finite (and equal to zero for a strictly causal se-
quence). In this case, X,(z) is a finite-degree polynomial and poses
no convergence issues (i.e. ROC{X,(z)} = C \ {oo}). As for X.(z), as-
sume X,(z) exists and is finite and take any z; so that |z;| > |zy|; we
have that for all n:

x[n] x[n]

<

n
1

n

Z 0

z

so that X.(z) is absolutely convergent in z; as well.

e The ROC for an anticausal sequence is a disk in the complex plane,
centered in the origin (Fig. 6.1b). For an anticausal sequence, N = 0o
while M is finite so that X.(z) poses no convergence issues
(i.e. ROC{X,(2)} = C\ {0}). As for X,(z), assume X,(zo) exists and
is finite and take any z; so that |z;| < |z¢|; we have that for all n:

}x[n]zﬂ < }x[n]z(’)’}

so that X,(z) is absolutely convergent in z; as well.

dh QN
NI RN

(@) (b)

Figure 6.1 ROC shapes (hatched area): (a) causal sequence; (b) anticausal se-
quence.
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6.1.4 ROC and System Stability

The z-transform provides us with a quick and easy way to test the stability
of a linear system. Recall from Section 5.2.2 that a necessary and sufficient
condition for an LTI system to be BIBO stable is the absolute summability
of its impulse response. This is equivalent to saying that a system is BIBO
stable if and only if the z-transform of its impulse response is absolutely
convergent in |z| = 1. In other words, a system is BIBO stable if the ROC of its
transfer function includes the unit circle.

6.1.5 ROC of Rational Transfer Functions
and Filter Stability

For rational transfer functions, the analysis of the ROC is quite simple; in-
deed, the only "trouble spots” for convergence are the values for which the
denominator of (6.3) is zero. These values are called the poles of the transfer
functions and clearly they must lie outside of the ROC. As a consequence,
we have an extremely quick and practical rule to determine the stability of a
realizable filter.

Consider a causal filter:

e Find the roots of the transfer function’s denominator (considered as a
polynomial in z). These are the system’s poles. Call py the pole with
the largest magnitude.

e The ROC has circular symmetry, it extends outwards to infinity and it
cannot include any pole; therefore the ROC will simply be the area on
the complex plane outside of a circle of radius |py|.

e For the ROC to include the unit circle we must have |pg| < 1. There-
fore, in order to have stability, all the poles must be inside the unit
circle.

For an anticausal system the procedure is symmetrical; once the smallest-
magnitude pole is known, the ROC will be a disk of radius |py| and therefore
in order to have stability, all the poles will have to be outside of the unit
circle.

6.2 The Pole-Zero Plot

The rational transfer function derived in (6.3) can be written out explicitly
in terms of the CCDEs coefficients, as follows:

H(z)= bo+byz7' + -+ bp_1z2~M-1) 6.14)
l+aiz ' +-+ayz27N-D '
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The transfer function is the ratio of two polynomials in z~! where the degree
of the numerator polynomial is M — 1 and that of the denominator polyno-
mial is N — 1. As a consequence, the transfer function can be rewritten in
factored form as

M-1
l_[(l—z z™h

H(z)= boN—l— (6.15)
(1- pnz_l)

n=1

where the z,, are the M — 1 complex roots of the numerator polynomial and
are called the zeros of the system; the p,, are the N — 1 complex roots of the
denominator polynomial and, as we have seen, they are called the poles of
the system. Both poles and zeros can have arbitrary multiplicity. Clearly, if
z; = py forsome i and k (i.e. if a pole and a zero coincide) the corresponding
first-order factors cancel each other out and the degrees of numerator and
denominator are both decreased by one. In general, it is assumed that such
factors have already been removed and that the numerator and denomina-
tor polynomials of a given rational transfer function are coprime.

The poles and the zeros of a filter are usually represented graphically
on the complex plane as crosses and dots, respectively. This allows for a
quick visual assessment of stability which, for a causal system, consists of
checking whether all the crosses are inside the unit circle (or, for anticausal
systems, outside).

6.2.1 Pole-Zero Patterns

The pole-zero plot can exhibit distinctive patterns according to the proper-
ties of the filter.

Real-Valued Filters. 1If the filter coefficients are real-valued (and this is
the only case that we consider in this text book) both the numerator and de-
nominator polynomials are going to have real-valued coefficients. We can
now recall a fundamental result from complex algebra: the roots of a poly-
nomial with real-valued coefficients are either real or they occur in complex-
conjugate pairs. So, if zy is a complex zero of the system, z{ is a zero as well.
Similarly, if po is a complex pole, so is p;. The pole-zero plot will therefore
shows a symmetry around the real axis (Fig. 6.2a).
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Figure 6.2 Examples of pole-zero patterns: (a) real-valued IIR filter (note the sym-
metry around the x-axis); (b) linear phase FIR (each zero appears with its recipro-
cal).

Linear-Phase FIR Filters. First of all, note that the pole-zero plot for an
FIR filter is actually just a zero plot, since FIR’s have no poles.’?) A particu-
larly important case is that of linear phase FIR filters; as we will see in detail
in Section 7.2.2, linear phase imposes some symmetry constraints on the
CCDE coefficients (which, of course, coincide with the filter taps). These
constraints have a remarkable consequence: if z is a (complex) zero of the
system, 1/zg is a zero as well. Since we consider real-valued FIR filters ex-
clusively, the presence of a complex zero in zo implies the existence of three
other zeros, namely in 1/z, zz and 1/ zz (Fig. 6.2b). See also the discussion
in Section 7.2.2

6.2.2 Pole-Zero Cancellation

We have seen in Section 5.2.1 that the effect of a cascade of two or more
filters is that of a single filter whose impulse response is the convolution of
all of the filters’ impulse responses. By the convolution theorem, this means
that the overall transfer function of a cascade of K filters 7, i =1,...,K is
simply the product of the single transfer functions H;(z):

K
H(z)=] [ Hi(z)
i=1

If all filters are realizable, we can consider the factored form of each H;(z)
asin (6.15). In the product of transfer functions, it may happen that some of

@Technically, since we use the notation z~! to express a delay, causal FIR filters have a
multiple pole in the origin (z = 0). This is of no consequence for stability, however, so
we will not consider it further.
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the poles of a given H;(z) coincide with the zeros of another transfer func-
tion, which leads to a pole-zero cancellation in the overall transfer function.
This is a method that can be used (at least theoretically) to stabilize an oth-
erwise unstable filter. If one of the poles of the system (assuming causality)
lies outside of the unit circle, this pole can be compensated by cascading an
appropriate first- or second-order FIR section to the original filter. In practi-
cal realizations, care must be taken to make sure that the cancellation is not
jeopardized by numerical precision problems.

6.2.3 Sketching the Transfer Function
from the Pole-Zero Plot

The pole-zero plot represents a convenient starting point in order to esti-
mate the shape of the magnitude for a filter’s transfer function. The basic
idea is to consider the absolute value of H(z), which is a three-dimensional
plot ()H (z)| being a real function of a complex variable). To see what hap-
pens to |H(z)| it is useful to imagine a “rubber sheet” laid over the complex
plane; then,

e every zero corresponds to a point where the rubber sheet is “glued” to
the plane,

e everypole corresponds to a “pole” which is “pushing” the rubber sheet
up (to infinity),

so that the shape of |H (z)| is that of a very lopsided “circus tent”. The mag-
nitude of the transfer function is just the height of this circus tent measured
around the unit circle.

In practice, to sketch a transfer function (in magnitude) given the pole-
zero plot, we proceed as follows. Let us start by considering the upper half
of the unit circle, which maps to the [0, 7] interval for the w axis in the DTFT
plot; for real-valued filters, the magnitude response is an even function and,
therefore, the [—7,0] interval need not be considered explicitly. Then:

1. Check for zeros on the unit circle; these correspond to points on the
frequency axis in which the magnitude response is exactly zero.

2. Draw a line from the origin of the complex plane to each pole and
each zero. The point of intersection of each line with the unit circle
gives the location of a local extremum for the magnitude response.

3. The effect of each pole and each zero is made stronger by their prox-
imity to the unit circle.



156 Filtering by Example — Z-Transform
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Figure 6.3 Sketch of the magnitude response for the pole-zero plot of Figure 6.2(a).

T T T T T T T

-1 -31/4 -2m/4 -/4 0 n/4 271/4 3n/4 T
Figure 6.4 Sketch of the magnitude response for the pole-zero plot of Figure 6.2(b).

As an example, the magnitude responses of the pole-zero plots in Figure 6.2
are displayed in Figures 6.3 and 6.4.

6.3 Filtering by Example - Z-Transform

We will quickly revisit the examples of the previous chapter to show the ver-
satility of the z-transform.

Moving Average. From the impulse response in (5.14), the transfer func-
tion of the moving average filter is

N-1

1 11-zN
_ -k _
H(z)= — I;:o R (6.16)

from which the frequency response (5.26) is easily derived by setting z =
e/, Tt is easy to see that the zeros of the filter are on all the roots of unity
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Figure 6.5 Pole-zero plots and ROC: (a) moving average filter with N = 8; (b) leaky
integrator with A = 0.65.

except for z = 1, where the numerator and denominator in (6.17) cancel
each other out. A factored representation of the transfer function for the
moving average is therefore

N-1
H(z)= % 1_[(1 —wkzk) (6.17)
k=1

and the pole-zero plot (for N = 8) is shown in Figure 6.5(a). There being no
poles, the filter is unconditionally stable.

Leaky Integrator. From the CCDE for the leaky integrator (5.16) we im-
mediately have

Y(z)=Az"'Y(2)+ (1 - 1)X(2) (6.18)
from which
H( )_ i (6.19)
T ’

The transfer function has therefore a single real pole in z = A; for a causal
realization, this implies that the ROC is the region of the complex plane ex-
tending outward from the circle of radius A. The causal filter is stable if A lies
inside the unit circle, i.e. if A < 1. An example of pole-zero plot together with
the associated ROC is shown in Figure 6.5(b) for the (stable) case of A =0.65.

Example 6.1: Transform of periodic functions
The z-transform converges without fuss for infinite-energy sequences which
the Fourier transform has some difficulties dealing with. For instance, the
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z-transform manages to “bring down” the unit step because of the vanish-
ing power of z7" for |z| > 1 and n large and this is the case for all one-sided
sequences which grow no more than exponentially. However, if |z~"| — 0 for
n — oo then necessarily |z="| — oo for n — —o0 and this may pose a problem
for the convergence of the z-transform in the case of two-sided sequences.
In particular, the z-transform does not converge in the case of periodic sig-
nals since only one side of the repeating pattern is “brought down” while the
other is amplified limitlessly. We can circumvent this impasse by “killing”
half of the periodic signal with a unit step. Take for instance the one-sided
cosine:

x[n]=cos(won)uln]

its z-transform can be derived as

00

X(z)= Z z " cos(won)un]

n=—oo

o0
=Zz‘” cos(won)
n=0
1 & 1 &
=_Zejwonz—n+_ze—jwonz—n
2 2
n=0 n=0

1 1 1
2 (l—ef""oz‘1 + l—e‘f‘“()z‘l)
B 1—cos(wg)z™!
" 1—2cos(wg)z  +272

Similar results can be obtained for signals such as x[n] = sin(wgn)u[n] or
x[n]=a" cos(won)uln].

Example 6.2: The impossibility of ideal filters

The z-transform of an FIR impulse response can be expressed as a simple
polynomial P(z) of degree L — 1 where L is the number of nonzero taps of
the filter (we can neglect leading factors of the form z~V). The fundamental
theorem of algebra states that such a polynomial has at most L — 1 roots; as
a consequence, the frequency response of an FIR filter can never be iden-
tically zero over a frequency interval since, if it were, its z-transform would
have an infinite number of roots. Similarly, by considering the polynomial
P(z)— C, we can prove that the frequency response can never be constant C
over an interval which proves the impossibility of achieving ideal (i.e. “brick-
wall”) responses with an FIR filter. The argument can be easily extended to
rational transfer functions, confirming the impossibility of a realizable filter
whose characteristic is piecewise perfectly flat.
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Further Reading

The z-transform is closely linked to the solution of linear, constant coef-
ficient difference equations. For a more complete treatment, see, for ex-
ample, R. Vich, Z Transform Theory and Applications (Springer, 1987), or
A. J. Jerri, Linear Difference Equations with Discrete Transforms Method
(Kluwer, 1996).

Exercises

Exercise 6.1: Interleaving. Consider two two-sided sequences h[n] and
gln] and consider a third sequence x[n] which is built by interleaving the
values of h[n] and g[n]:

x[n]=..., h[-3], g[-3], h[-2], g[-2], h[-1], g[-1], h[0],
g0, h(1], g(1], h(2], g[2], h[3], g[3], ...
with x[0] = h[0].

(a) Express the z-transform of x[n] in terms of the z-transforms of h[n]
and g[n].

(b) Assume that the ROC of H(z)is 0.64 < |z| < 4 and that the ROC of G(z)
is 0.25 < |z| < 9. What is the ROC of X(z)?

Exercise 6.2: Properties of the z-transform. Let x[n] be a discrete-time
sequence and X(z) be its corresponding z-transform with appropriate ROC.

(a) Prove that the following relation holds:

nxn] < —Z%X(z)

(b) Using (a), show that

1

n PN S
(n+1a"uln] I—az 12’

2] > |af

(c) Suppose that the above expression corresponds to the impulse re-
sponse of an LTI system. What can you say about the causality of such
a system? What about its stability?
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(d) Let a@ =0.8: what is the spectral behavior of the corresponding filter?
What if @ = —0.8?

Exercise 6.3: Stability. Consider a causal discrete system represented by
the following difference equation:

y[n]—3.25y[n—1]+0.75y[n—2]=x[n—1]+3x[n —2]

(a) Compute the transfer function and check the stability of this system
both analytically and graphically.

(b) Iftheinputsignalis x[n] =6[n]—30[n—1], compute the z-transform
of the output signal and discuss the stability.

(c) Take an arbitrary input signal that does not cancel the unstable pole
of the transfer function and repeat (b).

Exercise 6.4: Pole-zero plot and stability - I. Consider a causal LTI
system with the following transfer function:

34+4.5z71 2
1+15z71 1-05z7!

H(z)=

Sketch the pole-zero plot of the transfer function and specify its region of
convergence. Is the system stable?

Exercise 6.5: Pole-zero plot and stability - Il. Consider the transfer
function of an anticausal LTT system

1

Hz)=(1~2") =y

Sketch the pole-zero plot of the transfer function and specity its region of
convergence. Is the system stable?

Exercise 6.6: Pole-zero plot and magnitude response. In the fol-
lowing pole-zero plots, multiple zeros at the same location are indicated by
the multiplicity number shown to the upper right of the zero. Sketch the
magnitude of each frequency response and determine the type of filter.
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Exercise 6.7: z-tfransform and magnitude response. Consider a
causal LTI system described by the following transfer function:
1 1 1 1

—t-z P o3
6 2 2 6

14+-z2

H(z)=

(a) Sketch the magnitude response H(e/¢) from the z-transform. You can
use a numerical package to find the poles and the zeros of the transfer
function. What type of filter is H(z)?

(b) Sketch the pole-zero plot. Is the system stable?

Now fire up your favorite numerical package (or write some C code) and
consider the following length-128 input signal:

{o nell ... 50]
x[n]=
1 nel51 ... 128]



162 Exercises

(c) Plot the magnitude of its DTFT )X [k] )

(d) We want to filter x[n] with H(z) to obtain y[n]: Compute and plot
y[n] using the Matlab function £ilter. Plot also the magnitude of
its DTFT |Y[k]|.

(e) Explain qualitatively the form of y [n].

Exercise 6.8: DFT and z-transform. It is immediately obvious that the
DTFT of a sequence x[n] is simply its z-transform evaluated on the unit cir-
cle, i.e. for z = e/©. Equivalently, for a finite-length signal x, the DFT is sim-
ply the z-transform of the finite support extension of the signal evaluated at
z= W]Qk fork=0,..., N—1:

N-1

N-1
X[k]=" x[nlz™" = x[nwyt
n=0

—_w—k =0
z2=Wy n

By taking advantage of this fact, derive a simple expression for the DFT of
the time-reversed signal

X, =[x[N-1] x[N-2] ... x[1] x[0]”

Exercise 6.9: A CCDE. Consider an LTI system described by the following
constant-coefficient difference equation:

y[n—1]40.25y[n - 2] =x[n]
(a) Write the transfer function of the system.
(b) Plot its poles and zeros, and show the ROC.

(c) Compute the impulse response of the system.

Exercise 6.10: Inverse transform. Write out the discrete-time signal x[n]
whose z-transform is

X(z)=(14+2z)(1+3z7}

Exercise 6.11: Signal transforms. Consider a discrete-time signal x[n]
whose z-transform is

X(z2)=1+z'4z34+2"
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(a) Compute the DTFT of x[n], X(e/®). Your final result should be in the
form of a real function of w times a pure phase term.

(b) Sketch the magnitude of X(e/¢) as accurately as you can.

Consider now the length-4 signal y [n]:

y[n]=x[n], n=0,1,2,3

(c) Compute, for y[n], the four DFT coefficients Y[k], k =0,1,2,3.
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Chapter 7

Filter Design

In discrete-time signal processing, filter design is the art of turning a set of
requirements into a well-defined numerical algorithm. The requirements,
or specifications, are usually formulated in terms of the filter’s frequency
response; the design problem is solved by finding the appropriate coeffi-
cients for a suitable difference equation which implements the filter and
by specifying the filter’s architecture. Since realizable filters are described
by rational transfer functions, filter design can usually be cast in terms of
a polynomial optimization procedure for a given error measure. Additional
design choices include the computational cost of the designed filters, i.e. the
number of mathematical operations and storage necessary to compute each
output sample. Finally, the structure of the difference equation defines an
explicit operational procedure for computing the filter’s output values; by
arranging the terms of the equation in different ways, we can arrive at dif-
ferent algorithmic structures for the implementation of digital filters.

7.1 Design Fundamentals

As we have seen, a realizable filter is described by a rational transfer func-
tion; designing a filter corresponds to determining the coefficients of the
polynomials in transfer function with respect to the desired filter character-
istics. For an FIR filter of length M, there are M coefficients that need to be
determined, and they correspond directly to the filter's impulse response.
Similarly, for an IIR filter with a numerator of degree M —1 and a denomina-
tor of degree N — 1, there are M + N — 1 coefficients to determine (since we
always assume a( = 1). The main questions are the following:
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o How do we specify the characteristics of the desired filter? This ques-
tion effectively selects the domain in which we will measure the dif-
ference (i.e. the error) between the desired filter and the achieved im-
plementation. This can be the time domain (where we would be com-
paring impulse responses) or the frequency domain (where we would
be comparing frequency responses). Usually the domain of choice is
the frequency domain.

o What are the criteria to measure the quality of the obtained filter? This
question defines the way in which the above-mentionned error is mea-
sured; again, different criteria are possible (such as minimum square
error or minimax) and they do depend on the intended application.

o How do we choose the filter’s coefficients in order to obtain the desired
filtering characteristics? This question defines an optimization prob-
lem in a parameter space of dimension M + N — 1 with the optimality
criterion chosen above; it is usually answered by the existence of a
numerical recipe which performs the task.

o What is the best algorithmic structure (software or hardware) to imple-
ment a given digital filter? This last question concerns the algorithmic
design of the filter itself; the design is subject to various application-
dependent constraints which include computational speed, storage
requirement and arithmetic precision. Some of these design choices
will be addressed at the end of the Chapter.

As is apparent, real-world filters are designed with a variety of practi-
cal requirements in mind, most of which are conflicting. One such require-
ment, for instance, is to obtain a low “computational price” for the filtering
operation; this cost is obviously proportional to the number of coefficients
in the filter, but it also depends heavily on the underlying hardware architec-
ture. The tradeoffs between disparate requirements such as cost, precision
or numerical stability are very subtle and not altogether obvious; the art of
the digital filter designer, although probably less dazzling than the art of the
analog filter designer, is to determine the best design strategy for a given
practical problem.

7.1.1 FIR versus IIR

Filter design has a long and noble history in the analog domain: a linear
electronic network can be described in terms of a differential equation
linking, for instance, the voltage as a function of time at the input of the
network to the voltage at the output. The arrangement of the capacitors,
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inductances and resistors in the network determine the form of the differ-
ential equation, while their values determine its coefficients. A fundamen-
tal difference between an analog filter and a digital filter is that the trans-
formation from input to output is almost always considered instantaneous
(i.e. the propagation effects along the circuit are neglected). In digital filters,
on the other hand, the delay is always explicit and is actually the fundamen-
tal building block in a processing system. Because of the physical properties
of capacitors, which are ubiquitous in analog filters, the transfer function
of an analog filter (expressed in terms of its Laplace transform) is “similar”
to the transfer function of an IIR filter, in the sense that it contains both
poles and zeros. In a sense, IIR filters can be considered as the discrete-time
counterpart of classic analog filters. FIR filters, on the other hand, are the
flagship of digital signal processing; while one could conceive of an analog
equivalent to an FIR, its realization would require the use of analog delay
lines, which are costly and impractical components to manufacture. In a
digital signal processing scenario, on the other hand, the designer can freely
choose between two lines of attack with respect to a filtering problem, IIR or
FIR, and therefore it is important to highlight advantages and disadvantages
of each.

FIR Filters. The main advantages of FIR filters can be summarized as fol-
lows:

¢ unconditional stability;

e precise control of the phase response and, in particular, exact linear
phase;

e optimal algorithmic design procedures;

¢ robustness with respect to finite numerical precision hardware.
While their disadvantages are mainly:

¢ longer input-output delay;

¢ higher computational cost with respect to IIR solutions.
lIR Filters. IIR filters are often an afterthought in the context of digital sig-
nal processing in the sense that they are designed by mimicking established
design procedures in the analog domain; their appeal lies mostly in their

compact formulation: for a given computational cost, i.e for a given num-
ber of operations per input sample, they can offer a much better magnitude
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response than an equivalent FIR filter. Furthermore, there are a few fun-
damental processing tasks (such as DC removal, as we will see later) which
are the natural domain of IIR filters. The drawbacks of IIR filters, however,
mirror in the negative the advantages of FIR’s. The main advantages of IIR
filters can be summarized as follows:

o lower computational cost with respect to an FIR with similar behavior;
o shorter input-output delay;
e compact representation.
While their disadvantages are mainly:
o stability is not guaranteed;
¢ phase response is difficult to control;
e design is complex in the general case;
e sensitive to numerical precision.

For these reasons, in this book, we will concentrate mostly on the FIR design
problem and we will consider of IIR filters only in conjunction with some
specific processing tasks which are often encountered in practice.

7.1.2 Filter Specifications and Tradeoffs

A set of filter specifications represents a set of guidelines for the design of
a realizable filter. Generally, the specifications are formulated in the fre-
quency domain and are cast in the form of boundaries for the magnitude
of the frequency response; less frequently, the specifications will take the
phase response into account as well.

A set of filter specifications is best illustrated by example: suppose our
goal is to design a half-band lowpass filter, i.e. a lowpass filter with cutoff
frequency /2. The filter will possess a passband, i.e. a frequency range over
which the input signal is unaffected, and a stopband, i.e. a frequency range
where the input signal is annihilated. In order to turn these requirements
into specifications the following practical issues must be taken into account:

¢ Transition band. The range of frequencies between passband and
stopband is called the transition band. We should know by now (and
we shall see again shortly) that we cannot obtain an instantaneous
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transition in a realizable filter). Therefore, we must be willing to al-
low for a gap between passband and stopband where we renounce
control over the frequency response; suppose we estimate that we
can tolerate a transition band width up to 20 % of the total bandwidth:
since the cutoff is supposed to be at 0.5 7, the transition band will thus
extend from 0.4 7 to 0.6 7.

e Tolerances. Similarly, we cannot impose a strict value of 1 for the
passband and a value of 0 for the stopband (again, this has to do with
the fact that the rational transfer function, being analytical, cannot be
a constant over an interval). So we must allow for tolerances, i.e. mini-
mum and maximum values for the frequency response over passband
and stopband (while, in the transition band, we don’t care). In our
example, suppose that after examining the filter usage scenario we
decide we can afford a 10% error in the passband and a 30% error in
the stopband. (Note that these are hugetolerances, but they make the
plots easier to read).

passband transition band stopband

0 T 1
0 0.4m /2 0.67 T

Figure 7.1 Typical lowpass filter specifications.

These specifications can be represented graphically as in Figure 7.1; note
that, since we are dealing with real-valued filter coefficients, it is sufficient
to specify the desired frequency response only over the [0, 7] interval, the
magnitude response being symmetric. The filter design problem consists
now in finding the minimum size FIR or IIR filter which fulfills the required

(To get an initial intuition as to why this is, consider that an instantaneous (vertical) tran-
sition constitutes a jump discontinuity in the frequency response. But the frequency
response is just the transfer function computed on the unit circle and, for a realizable
filter, the transfer function is a rational function which must be continuous.
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0 T
0 0.4m /2 0.67 T

Figure 7.2 Example of monotonic filter which does not satisfies the specifications.

0 0.47 /2 0.6 T

Figure 7.3 Example of FIR filter which does not satisfies the specifications.

. N

T 1

0 0.4m /2 0.67 T

Figure 7.4 Example of monotonic filter which satisfies (and exceeds) the specifi-
cations.
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specifications. As an example, Figure 7.2 shows an IIR filter which does not
fulfill the specifications since the stopband error is above the maximum er-
ror at the beginning of the stopband. Similarly, Figure 7.3 shows an FIR filter
which breaks the specifications in the passband. Finally, Figure 7.4 shows a
monotonic IIR filter which matches and exceeds the specifications (i.e. the
error is always smaller than the maximum error).

7.2 FIR Filter Design

In this section we will explore two fundamental strategies for FIR filter de-
sign, the window method and the minimax (or Parks-McClellan) method.
Both methods seek to minimize the error between a desired (and often ideal)
filter transfer function and the transfer function of the designed filter; they
differ in the error measure which is used in the minimization. The window
method is completely straightforward and it is often used for quick designs.
The minimax method, on the other hand, is the procedure of choice for ac-
curate, optimal filters. Both methods will be illustrated with respect to the
design of a lowpass filter.

7.2.1 FIR Filter Design by Windowing

We have already seen in Section 5.6 that if there are no constraints (not even
realizability) the best lowpass filter with cutoff frequency w, is the ideal low-
pass. The impulse response is therefore the inverse Fourier transform of the
desired transfer function:

h[n]=iJ H(e!“)el“" dw

21
-7
I I
=— el“"dw
21
—we
1 . »
— . [e]wcn_e ]wcn]
2njn
_sin(w,n)
 7n

We . We
=—SInc|—n
w T

The resulting filter, as we saw, is an ideal filter and it cannot be represented
by a rational transfer function with a finite number of coefficients.
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Impulse Response Truncation. Asimple idea to obtain a realizable filter
is to take a finite number of samples from the ideal impulse response and
use them as coefficients of a (possibly rather long) FIR filter:®

(7.1)

R hin] —-N<n<N
h[n]=
0 otherwise

This is a (2N + 1)-tap FIR obtained by truncating an ideal impulse response
(Figs 5.10 and 5.11). Note that the filter is noncausal, but that it can be made
causal by using an N-tap delay; it is usually easier to design FIR’s by consid-
ering a noncausal version first, especially if the resulting impulse response is
symmetric (or antisymmetric) around n = 0. Although this approximation
was derived in a sort of “intuitive” way, it actually satisfies a very precise
approximation criterion, namely the minimization of the mean square er-
ror (MSE) between the original and approximated filters. Denote by E, this
error, that is

s
Ej :f |H(e/)— A’ )| dw
-7

We can apply Parseval’s theorem (see (4.59)) to obtain the equivalent expres-
sion in the discrete-time domain:

Ey=21 ) |h[n] - hln][

ne¥

If we now recall that /2[n] =0 for |n| > N, we have

P [ N A ) 00 , N4 2'|
)= nlz |nin]=Rnl| + Y |hlnl] + D )h[n]|J
n=— n=N+1 n=—oo

Obviously the last two terms are nonnegative and independent of hin].
Therefore, the minimization of E, with respect to h[n] is equivalent to the
minimization of the first term only, and this is easily obtained by letting

h[n]= h[n], forn=-N,...,N

In spite of the attractiveness of such a simple and intuitive solution,
there is a major drawback. If we consider the frequency response of the
approximated filter, we have

N
H(el®)= Z hin]e /¢

n=—N

@Here and in the following the “hat” notation will denote an approximated or otherwise
derived filter.
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which means that H(e/®) is an approximation of H(e/®) obtained by us-
ing only 2N + 1 Fourier coefficients. Since H(e/®) has a jump discontinuity
in w., H(e/®) incurs the well-known Gibbs phenomenon around w,.. The
Gibbs phenomenon states that, when approximating a discontinuous func-
tion with a finite number of Fourier coefficients, the maximum error in an
interval around the jump discontinuity is actually independent of the num-
ber of terms in the approximation and is always equal to roughly 9% of the
jump. In other words, we have no control over the maximum error in the
magnitude response. This is apparent in Figure 7.5 where |H(ef ‘“)| is plot-
ted for increasing values of N; the maximum error does not decrease with
increasing N and, therefore, there are no means to meet a set of specifica-
tions which require less than 9% error in either stopband or passband.

error ~ 0.09

0 T - —mm

0 /2 T

Figure 7.5 Gibbs phenomenon in lowpass approximation; magnitude of the ap-
proximated lowpass filter for N = 4 (light gray), N = 10 (dark gray) and N = 50
(black).

The Rectangular Window. Another way to look at the resulting approx-
imation is to express h[n] as

hin]= h[nlw[n) (7.2)
with
n 1 —-N<n<N
w([n]=rect (—) = ) (7.3)
2N 0 otherwise

w|n] is called a rectangular window of length (2N + 1) taps, which in this
case is centered at n =0.



174 FIR Filter Design

We know from the modulation theorem in (5.22) that the Fourier trans-
form of (7.2) is the convolution (in the space of 27t-periodic functions) of the
Fourier transforms of h[n] and w{n]:

. 1 (™ . .
H(ef“):§f H(e/?yw(el @M q0

-7

It is easy to compute W(e/®) as

. N . sin (a) (N—i— %))
W(el®)= ZNe_f‘“”= Sin(g) (7.4)
2

An example of W(e/®) for N = 6 is shown in Figure 7.6. By analyzing the
form of W(e/«) for arbitrary N, we can determine that:

o the first zero crossing of W(e/®) occurs at w =27/(2N +1);
o thewidth of the main lobe of the magnitude response is A =47 /(2N + 1);

o there are multiple sidelobes, an oscillatory effect around the main lobe
and there are up to 2N sidelobes for a 2N + 1-tap window.

12 1

0
_3,\/\/\/,\/\/\/

-1 -31/4 -2m/4 -1t/ 0 n/4 271/4 3n/4 T

Figure 7.6 Fourier transform of the rectangular window for N =6.

In order to understand the shape of the approximated filter, let us go
back to the lowpass filter example and try to visualize the effect of the con-
volution in the Fourier transform domain. First of all, since all functions
are 2n-periodic, everything happens circularly, i.e. what “goes out” on the
right of the [—, 7r] interval “pops” immediately up on the left. The value at
wy of H(e/®) is the integral of the product between H(e/) and a version of
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W (eJ ) circularly shifted by wq. Since H(e/®) is zero except over [—w,, w.],
where it is one, this value is actually:

o 1 [« I

H(e/“)= — w(e/@=Mqo

2n o,
When wy is such that the first right sidelobe of W(e/) is outside of the
[—w¢, w.] interval, then the integral reaches its maximum value, since the
sidelobe is negative and it’s the largest. The maximum value is dependent
on the shape of the window (a rectangle in this case) but not on its length.
Hence the Gibbs phenomenon.
To recap, the windowing operation on the ideal impulse response,

i.e. the circular convolution of the ideal frequency response with W(e/«),
produces two main effects:

e The sharp transition from passband to stopband is smoothed by the
convolution with the main lobe of width A.

o Ripples appearboth in the stopband and the passband due to the con-
volution with the sidelobes (the largest ripple being the Gibbs phe-
nomenon).

The sharpness of the transition band and the size of the ripples are de-
pendent on the shape of the window’s Fourier transform; indeed, by care-
fully designing the shape of the windowing sequence we can trade mainlobe
width for sidelobe amplitude and obtain a more controlled behavior in the
frequency response of the approximation filter (although the maximum er-
ror can never be arbitrarily reduced).

Other Windows. In general, the recipe for filter design by windowing in-
volves two steps: the analytical derivation of an ideal impulse response fol-
lowed by a suitable windowing to obtain an FIR filter. The ideal impulse
response h[n] is obtained from the desired frequency response H(e/®) by
the usual DTFT inversion formula

s
hin]=— J H(e/®)e/“" dw
-7
While the analytical evaluation of the above integral may be difficult or im-
possible in the general case, for frequency responses H(e/«)which are piece-
wise linear, the computation of k[n] can be carried out in an exact (if non-
trivial) way; the result will be a linear combination of modulated sinc and
sinc-squared sequences.® The FIR approximation is then obtained by ap-
plying a finite-length window w[n] to the ideal impulse response as in (7.2).

®For more details one can look at the Matlab £ir1 function.
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The shape of the window can of course be more sophisticated than the sim-
ple rectangular window we have just encountered and, in fact, a hefty body
of literature is devoted to the design of the “best” possible window. In gen-
eral, a window should be designed with the following goals in mind:

o the window should be short, as to minimize the length of the FIR and
therefore its computational cost;

o the spectrum of the window should be concentrated in frequency
around zero as to minimize the “smearing” of the original frequency
response; in other words, the window’s main lobe should be as narrow
as possible (it is clear that for W(e/®) = §(w) the resulting frequency
response is identical to the original);

¢ the unavoidable sidelobes of the window’s spectrum should be small,
so as to minimize the rippling effect in the resulting frequency re-
sponse (Gibbs phenomenon).

It is clear that the first two requirements are openly in conflict; indeed, the
width of the main lobe A is inversely proportional to the length of the win-
dow (we have seen, for instance, that for the rectangular window A =47 /M,
with M, the length of the filter). The second and third requirements are also
in conflict, although the relationship between mainlobe width and sidelobe
amplitude is not straightforward and can be considered a design parameter.
In the frequency response, reduction of the sidelobe amplitude implies that
the Gibbs phenomenon is decreased, but at the “price” of an enlargement
of the filter’s transition band. While a rigorous proof of this fact is beyond
the scope of this book, consider the simple example of a triangular window
(with N odd):

N-—n
—— |n|<N
wen]l=wln]= N (7.5)

0 otherwise

It is easy to verify that w;[n] = w[n]* w(n], with w[n] = rect(2n/(N — 1))
(i.e. the triangle can be obtained as the convolution of a half-support rect-
angle with itself) so that, as a consequence of the convolution theorem, we
have

(7.6)

. 2
Wi(el®)=W(e/)W(e!®)= [—Sm(wN/Z)]

sin(w/2)

The net result is that the amplitude of the sidelobes is quadratically reduced
but the amplitude of the mainlobe A is roughly doubled with respect to an
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equivalent-length rectangular window; this is displayed in Figure 7.7 for a
17-point window (values are normalized so that both frequency responses
are equal in w = 0). Filters designed with a triangular window therefore
exhibit a much wider transition band.

0 /4 21/4 3n/4 T

Figure 7.7 Fourier transform of the 17-point rectangular window (gray) vs. an
equal-length triangular window (black).
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Figure 7.8 Hamming window (N =32).
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Figure 7.9 Blackman window (N =32).
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Other commonly used windows admit a simple parametric closed form
representation; the most important are the Hamming window (Fig. 7.8):

n+N
w(n)=0.54—0.46 cos (271 N ) In|<N-1

and the Blackman window (Fig. 7.9):

n+N

n+N
) +0.08cos (47r
2N

w(n)=0.42—-0.5cos (27‘5
2N

), In|<N-1

The magnitude response of both windows is plotted in Figure 7.10 (on a log
scale so as to enhance the difference in sidelobe amplitude); again, we can
remark the tradeoff between mainlobe width (translating to a wider tran-
sition band in the designed filter) and sidelobe amplitude (influencing the
maximum error in passband and stopband).

0.00

-35.00

-70.00

-105.00

-140 T T T
0 /4 21/4 3n/4 T

Figure 7.10 Magnitude response (dB scale) of the 17-point rectangular (light gray),
Hamming (dark gray) and Blackman (black) windows.

Limitations of the Window Method. Lack of total control on passband
and stopband error is the main limitation inherent to the window method;
this said, the method remains a fundamental staple of practical signal pro-
cessing as it yields perfectly usable filters via a quick, flexible and simple
procedure. The error characteristic of a window-designed filter can be par-
ticularly aggravating in sensitive applications such as audio processing,
where the peak in the stopband error can introduce unacceptable artifacts.
In order to improve on the filter performance, we need to completely revise
our design approach. A more suitable optimization criterion may, for in-
stance, be the minimax criterion, where we aim to explicitly minimize the
maximum approximation error over the entire frequency support; this is
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thoroughly analyzed in the next section. We can already say, however, that
while the minimum square error is an integral criterion, the minimax is a
pointwise criterion; or, mathematically, that the MSE and the minimax are
respectively L, ([—7,7])- and Ly ([—7, 7t])-norm minimizations for the er-
ror function E(w) = H(e/®)—H(e/®). Figure 7.11 illustrates the typical result
of applying both criteria to the ideal lowpass problem. As can be seen, the
minimum square and minimax solutions are very different.

\ \
\ \
0 \‘ 0 \‘

0 047 x/2 0 047 x/2

Figure 7.11 Error shapes in passband for MSE and minimax optimization meth-
ods.

7.2.2 Minimax FIR Filter Design

As we saw in the opening example, FIR filter design by windowing mini-
mizes the overall mean square error between the desired frequency response
and the actual response of the filter. Since this might lead to a very large er-
ror at frequencies near the transition band, we now consider a different ap-
proach, namely the design by minimax optimization. This technique mini-
mizes the maximum allowable error in the filter’s magnitude response, both
in the passband and in the stopband. Optimality in the minimax sense re-
quires therefore the explicit stating of a set of folerances in the prototypi-
cal frequency response, in the form of design specifications as seen in Sec-
tion 7.1.2. Before tackling the design procedure itself, we will need a series
of intermediate results.

Generalized Linear Phase. In Section 5.4.3, we introduced the concept
of linear phase; a filter with linear phase response is particularly desirable
since the phase response translates to just a time delay (possibly fractional)
and we can concentrate on the magnitude response only. We also intro-
duced the notion of group delay and showed that linear phase corresponds
to constant group delay. Clearly, the converse is not true: a frequency re-
sponse of the type

H(eja)): )H(eja))) e—jwd+ja



180 FIR Filter Design

has constant group delay but differs from a linear phase system by a con-
stant phase factor e/%. We will call this type of phase response general-
ized linear phase. Important cases are those for which a = 0 (strictly linear
phase) and a = 7t/2 (generalized linear phase used in differentiators).

FIR Filter Types. Consider a causal, M-tap FIR filter with impulse response
hln], n=0,1,...,M —1; in the following, we are interested in filters whose
impulse response is symmetric or antisymmetric around the “midpoint”. If
the number of taps is odd, the midpoint of the impulse response coincides
with the center tap h[(M — 1)/2]; if the number of taps is even, on the other
hand, the midpoint is still at (M —1)/2 but this value does not coincide with
atap since it is located “right in between” taps h[M/2—1] and h[M/2]. Sym-
metric and antisymmetric FIR filters are important since their frequency re-
sponse has generalized linear phase. The delay introduced by these filters is
equal to (M —1)/2 samples; clearly, this is an integer delay if M is odd, and it
is fractional (half a sample more) if M is even. There are four different pos-
sibilities for linear phase FIR impulse responses, which are listed here with
their corresponding generalized linear phase parameters :

Type Nb. of Taps Symmetry Delay Phase
Type I odd symmetric integer a=0
Typell | even symmetric fractional a=0
TypeIll | odd antisymmetric  integer a=m/2
TypelV | even antisymmetric fractional a=7m/2

The generalized linear phase of (anti)symmetric FIRs is easily shown. Cons-
ider for instance a Type I filter, and define C =(M — 1)/2, the location of the
center tap; we can compute the transfer function of the shifted impulse re-
sponse hg[n] = h[n + C], which is now symmetric around zero.
ie. hg[—n]=hg4[n]:

C
Ha(z)= Y haln)z™"
n=—=_C
—1 C
=hal0l+ D haln)z™ + Y haln]z™"
n=-—C n=1

C
= h4[0] +Zhd[n](z” +z7M) 7.7)
n=1

By undoing the time shift we obtain the original Type I transfer function:

H(z)=2z""7 Hy(z) (7.8)
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On the unit circle (7.7) becomes

C
Ha(el®)=ha[0]+ ) haln)(e/®" +e7Im)

n=1

C
:hd[0]+22 hg[n]cosnw (7.9)

n=1

which is a real function; the original Type I frequency response is obtained
from (7.8):

M-1

(e/®)= M-1 +2 hin]cosnw| e /® 7

Hiel ) I-h|: 1] Z -I M-1
[ 2 n=(M+1)/2 J

which is clearly linear phase with delay d =(M —1)/2 and a =0. The gener-
alized linear phase of the other three FIR types can be shown in exactly the
same way.

Zero Locations. The symmetric structures of the four types of FIR fil-
ters impose some constraints on the locations of the zeros of the transfer
function. Consider again a Type I filter; from (7.7) it is easy to see that
H,(z7')= Hy4(z); by using (7.8) we therefore have

H(z)=z""7 Hy(z)
H(z"")=z"7 Ha(z)

which leads to
H(z HY=zM"1H(z) (7.10)

It is easy to show that the above relation is also valid for Type II filters, while
for Type III and Type IV (antisymmetric filters) we have

H(z HY=—-z""1H(2) (7.11)

These relations mean that if z( is a zero of a linear phase FIR, then so is
z, !, This result, coupled with the usual fact that all complex zeros come in
conjugate pairs, implies that if z( is a zero of H(z), then:

o If zo=p €Rthen p and 1/p are zeros.
e Ifzo=pe/f thenpel? (1/p)ei?, pe=i? and (1/p)e~7? are zeros.
Consider now equation (7.10) again; if we set z =—1,

H-1)=(-1)""H(-1) (7.12)
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for Type II filters, M — 1 is an odd number, which leads to the conclusion
that H(—1) = 0; in other words, Type II filters must have a zero at w = 7.
Similar results can be demonstrated for the other filter types, and they are
summarized below:

Filter Type Relation Constraint on Zeros

Typel H(z71)=zM-1H(z) No constraints

Type Il H(z ))=zM-1H(z) Zeroatz=-1(i.e.w=m)

Type 111 H(z7Y)=—-zM-1H(z) Zerosatz==1 (i.e.atw =0, w=")
Type IV H(z \)=—-zM-1H(z) Zeroatz=1 (i.e. w=0)

These constraints are important in the choice of the filter type for a given
set of specifications. Type Il and Type III filters are not suitable in the design
of highpass filters, for instance; similarly, Type III and Type IV filters are not
suitable in in the design of lowpass filters.

Chebyshev Polynomials. Chebyshev polynomials are a family of or-
thogonal polynomials {Ti(x)} oy which have, amongst others, the follow-
ing interesting property:

cosnw = T,(cos w) (7.13)

in other words, the cosine of an integer multiple of an angle w can be ex-
pressed as a polynomial in the variable cos w. The first few Chebyshev poly-
nomials are

To()C) =1
Ti(x)=x
Th(x)=2x>—1

Ty(x) =4x° —3x
Ty(x)=8x*—8x>+1

and, in general, they can be derived from the recursion formula:
Tie1(x) =2x Tie(x) — Tie—1(x) (7.14)

From the above table it is easy to see that we can write, for instance,
cos(3w)=4cos® w—3cosw

The interest in Chebyshev polynomials comes from the fact that the zero-
centered frequency response of a linear phase FIR can be expressed as a lin-
ear combination of cosine functions, as we have seen in detail for Type I
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filters in (7.9). By using Chebyshev polynomials we can rewrite such a re-
sponse as just one big polynomial in the variable cosw. Let us consider
an explicit example for a length-7 Type I filter with nonzero coefficients
h[n]=[d c b a b c d]; we can state that

Hy(el®)=a+2bcosw+2ccos2w+2d cos3w
and by using the first four Chebyshev polynomials we can write
Ha(e/®Y=a+2bcosw+2c(2cos®> w—1)+2d(4cos® w — 3cos w)
=(a—2c¢)+(2b —6d)cos w +4c cos® w +8d cos® w (7.15)

In this case, Hz(e/®) turns out to be a third degree polynomial in the vari-
able cosw. This is the case for any Type I filter, for which we can always
write

(M-1)/2
Hy(e!®)= Z cr cosk w (7.16)
k=0
— P(x) (7.17)
X=COSw

where P(x) is a polynomial of degree (M — 1)/2 whose coefficients cj are
derived as linear combinations of the original filter coefficients aj as illus-
trated in (7.15). For the other types of linear phase FIR, a similar representa-
tion can be obtained after a few trigonometric manipulations. The general
expression is

L
Hy(el®)= f(co)z crcost w
k=0

= f(w)P(x) (7.18)

X=COosw

where the ci are still linear combinations of the original filter coefficients
and where f(w) is a weighting trigonometric function. Both f(w) and the
polynomial degree L vary as a function of the filter type.® In the following
Sections, however, we will concentrate only on the design of Type I filters,
so these details will be overlooked; in practice, since the design is always

@For the sake of completeness, here is a summary of the details:

Filter Type | L flw)
Typel (M-1)/2 1

Type IT (M—-2)/2 cos(w/2)
Type I11 (M—-3)/2 sin(w)

Type IV (M—-2)/2 sin(w/2)



184 FIR Filter Design

carried out using numerical packages, the appropriate formulation for the
filter expression is taken care of automatically.

Polynomial Optimization. Going back to the filter design problem, we
stipulate that the FIR filters are (generalized) linear phase, so we can con-
centrate on the real frequency response of the zero-centered filter, which
is represented by the trigonometric polynomial (7.18). Moreover, since the
impulse response is real and symmetric, the aforementioned real frequency
response is also symmetric around « = 0. The filter design procedure can
thus be carried out only for values of w over the interval [0, 7t], with the other
half of the spectrum obtained by symmetry. For these values of w, the vari-
able x = cos w is mapped onto the interval [1, —1] and the mapping is invert-
ible. Therefore, the filter design problem becomes a problem of polynomial
approximation over intervals.

To illustrate the procedure by example, consider once more the set of fil-
ter specifications in Figure 7.1 and suppose we decide to use a Type I filter.
Recall that we required the prototype filter to be lowpass, with a transition
band from w, = 0.47 to ws; = 0.67; we further stated that the tolerances
for the realized filter’s magnitude must not exceed 10 % in the passband and
1% in the stopband. This implies that the maximum magnitude error be-
tween the prototype filter and the FIR filter response H(e/®) must not ex-
ceed 6, = 0.1 in the interval [0, w,] and must not exceed 65 = 0.01 in the
interval [wg, t]. We can formulate this as follows: the frequency response of
the desired filter is

1 wel0,wy]

Hp(el®)=

0 welws,n]
(note that Hp(e/®) is not specified in the transition band). Since the tol-
erances on passband and stopband are different, they can be expressed in
terms of a weighting function Hy (w) such that the tolerance on the error is
constant over the two bands:

1 w €[0,wp]
H =10 7.19
wle) 6—p: 10 we[ws, ) ( )

With this notation, the filter specifications amount to the following:

max  {Hw(w)|Ha(e/®)— Hp(e!®)|} <6,=0.1 (7.20)

w€[0,wp]U[ws, 7]

and the question now is to find the coefficients for h[n] (their number M
and their values) which minimize the above error. Note that we leave the
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transition band unconstrained (i.e. it does not affect the minimization of
the error).

The next step is to use (7.18) to reformulate the above expression as a
polynomial optimization problem. To do so, we replace the frequency re-
sponse H;(e/®) with its polynomial equivalent and set x = cos w; the pass-
band interval [0, w,] and the stopband interval [w, 7] are mapped into the
intervals for x:

I, =[cos wp,1]

I; =[—1,cos w;g]

respectively; similarly, the desired response becomes:

_ 1 wel,
D(x)= (7.21)
0 wel;

and the weighting function becomes:
1 welp
W(x)= (7.22)
0p/6s wels

The new set of specifications are shown in Figure 7.12. Within this polyno-
mial formulation, the optimization problem becomes:

max {W(x)|P(x) - D(x)|} = max{|E(x)|} <5, (7.23)

xelpUl;

where P(x) is the polynomial representation of the FIR frequency response
asin (7.18).

-1 c0s(0.67) cos(0.47) 1

Figure 7.12 Filter specifications as in Figure 7.1 formulated here in terms of poly-
nomial approximation, i.e. for x =cosw, w € [0, 7].
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Alternation Theorem. The optimization problem stated by (7.23) can be
solved by using the following theorem:

Theorem 7.1 Consider a set {1} of closed, disjoint intervals on the real axis
and their union I = U « I Consider further:

L
e a polynomial P(x) of degree L, P(x) = Z a,x";

n=0

o adesired function D(x), continuous over I;

e a positive weighting function W(x).
Consider now the approximation error function
E(x)=W(x)[D(x)— P(x)]
and the associated maximum approximation error over the set of closed in-
tervals

Emax = max{|E(x) }

Then P(x) is the unique order-L polynomial which minimizes Emax if
and only if there exist at least L + 2 successive values x; in I such that
|E(x,-)| = Enax and

E(x;)=—E(xi+1)
In other words, the error function must have at least L+ 2 alternations be-

tween its maximum and minimum values. Such a function is called equirip-
ple.

Going back to our lowpass filter example, assume we are trying to design
a 9-tap optimal filter. This theorem tells us that if we found a polynomial
P(x) of degree 4 such that the error function (7.23) over I, and I; as is shown
in Figure 7.13 (6 alternations), then the polynomial would be the optimal

)
=
[=2)

™\

ya

-1 cos(0.6)  cos(0.47) 1

g

Figure 7.13 Approximation error function E(x) for a 9-tap lowpass prototype; al-
ternations are marked by a dot.
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and unique solution. Note that the extremal points (i.e. the values of the
error function at the edges of the optimization intervals) do count in the
number of alternations since the intervals I are closed.

The above theorem may seem a bit far-fetched since it does not tell us
how to find the coefficients but it only gives us a test to verify their optimal-
ity. This test, however, is at the core of an iferative algorithm which refines
the polynomial from an initial guess to the point when the optimality condi-
tion is met. Before considering the optimization procedure more in detail,
we will state without formal proof, three consequences of the alternation
theorem as it applies to the design of Type I lowpass filters:

¢ The minimum number of alternations for an optimal M-tap lowpass
filter is L+2, with L =(M —1)/2; this is the result of the alternation the-
orem. The maximum number of alternation, however, is L+ 3; filters
with L+ 3 alternation are called extraripple filters.

e Alternations always take place at x = cosw, and x = cosws (i.e. at
w=wp and w = wy.

e If the error function has a local maximum or minimum, its absolute
value at the extremum must be equal to Epax except possibly in x =—1
or x = 1. In other words, all local maxima and minima of the fre-
quency response must be alternating, exceptin w =0 or w = 1.

o If the filter is extraripple, the extra alternation occurs at either w =0
or w=m.

Optimization Procedure. Finally, by putting all the elements together,
we are ready to state an algorithmic optimization procedure for the design
of optimal minimax FIR filters; this procedure is usually called the Parks-
McClellan algorithm. Remember, we are trying to determine a polynomial
P(x) such that the approximation error in (7.23) is equiripple; for this, we
need to determine both the degree of the polynomial and its coefficients.
For a given degree L, for which the resulting filter has 2L+ 1 taps, the L co-
efficients are found by an iterative procedure which successively refines an
initial guess for the L+ 2 alternation points x; until the error is equiripple.®
After the iteration has converged, we need to check that the corresponding

®Details about this crucial optimization step can be found in the bibliographic refer-
ences. While a thorough discussion of the algorithm is beyond the scope of the book, we
can mention that at each iteration the new set of candidate extremal points is obtained
by exchanging the old set with the ordinates of the current local maxima. This trick is
known as the Remez exchange algorithm and that is why, in Matlab, the Parks-McClellan
algorithm is named remez.
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Enax satisfies the upper bound imposed by the specifications; when this is
not the case, the degree of the polynomial (and therefore the length of the
filter) must be increased and the procedure must be restarted. Once the
conditions on the error are satisfied, the filter coefficients can be obtained
by inverting the Chebyshev expansion.

As a final note, an initial guess for the number of taps can be obtained
using the empirical formula by Kaiser; for an M-tap FIR h[n], n = 0,...,
M-1:

M —101log;((6,65)—13
2.3240Q

where 6, is the passband tolerance, 9, is the stopband tolerance and Q2 =
w;s — wy, is the width of the transition band.

The Final Design. We now summarize the design steps for the specifica-
tions in Figure 7.1. We use a Type I FIR. We start by using Kaiser’s formula to
obtain an estimate of the number of taps: since 6,6, =103 and 2 =0.27,
we obtain M = 12.6 which we round up to 13 taps. At this point we can
use any numerical package for filter design to run the Parks-McClellan algo-
rithm. In Matlab this would be

[h, err] = remez(12, [0 0.4 0.6 1], [1 1 0 0], [1 101]);

The resulting frequency response is plotted in Figure 7.14; please note
that we are plotting the frequency responses of the zero-centered filter i 4[n],
which is a real function of w. We can verify that the filter has indeed
(M —1)/2 =6 alternation by looking at enlarged picture of the passband and
the stopband, as in Figure 7.15. The maximum error as returned by Mat-
lab is however 0.102 which is larger than what our specifications called for,

0 /4 271/4 31/4 T

Figure 7.14 An optimal 13-tap Type I filter which does not meet the error specifi-
cations.
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Figure 7.15 Details of passband and stopband of the frequency response in Fig-
ure 7.14.

i.e. 0.1. We are thus forced to increase the number of taps; since we are us-
ing a Type I filter, the next choice is M = 15. Again, the error turns out to be
larger than 0.1, since in this case we have Enax = 0.1006. The next choice,
M =17, finally yields an error En,x = 0.05, which exceeds the specifications
by a factor of 2. It is the designer’s choice to decide whether the computa-
tional gains of a shorter filter (M = 15) outweigh the small excess error. The
impulse response and the frequency response of the 17-tap filter are plotted
in Figure 7.16 and Figure 7.17. Figure 7.18 shows the zero locations for the
filter; note the typical linear-phase zero pattern as well as the zeros on the
unit circle in the stopband.

04 R

02 4

Figure 7.16 Impulse response of the 17-tap filter meeting the specifications.

Other Types of Filters. The Parks-McClellan optimal FIR design proce-
dure can be made to work for arbitrary filter types as well, such as highpass
and bandpass, but also for more sophisticated frequency responses. The
constraints imposed by the zero locations as we saw on page 181 determine
the type of filter to use; once the desired response Hp(e/®) is expressed as a
trigonometric function, the optimization algorithm can take its course. For
arbitrary frequency responses, however, the fact that the transition bands
are left unconstrained may lead to unacceptable peaks which render the
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filter useless. In these cases, visual inspection of the obtained response is
mandatory and experimentation with different filter lengths and tolerance
may improve the final result.

0 /4 21/4 3n/4 T

Figure 7.17 Frequency response of the 17-tap filter meeting the specifications.
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Figure 7.18 Pole-zero plot for the equiripple FIR in Figure 7.17.

7.3 lIR Filter Design

As we mentioned earlier, no optimal procedure exists for the design of IIR
filters. The fundamental reason is that the optimization of the coefficients
of a rational transfer function is a highly nonlinear problem and no satis-
factory algorithm has yet been developed for the task. This, coupled with
the impossibility of obtaining an IIR with linear phase response® makes
the design of the IIR filter a much less formalized art. Many IIR designed

©®1t can be proved rigorously that an infinite impulse response with linear phase is neces-
sarily not realizable — think of a sinc filter, for instance.
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techniques are described in the literature and their origin is usually in tried-
and- true analog filter design methods. In the early days of digital signal
processing, engineers would own voluminous books with exhaustive lists of
capacitance and inductance values to be used for a given set of (analog) fil-
ter specifications. The idea behind most digital IIR filter design techniques
was to be able to make use of that body of knowledge and to devise formulas
which would translate the analog design into a digital one. The most com-
mon such method is known as bilinear transformation. Today, the formal
step through an analog prototype has become unnecessary and numerical
tools such as Matlab can provide a variety of routines to design an IIR.

Here we concentrate only on some basic IIR filters which are very simple
and which are commonly used in practice.

7.3.1 All-Time Classics

There are a few applications in which simple IIR structures are the design
of choice. These filters are so simple and so well behaved that they are a
fundamental tool in the arsenal of any signal processing engineer.

DC Removal and Mean Estimation. The DC component of a signal
is its mean value; a signal with zero mean is also called an AC signal. This
nomenclature comes from electrical circuit parlance: DC is shorthand for
direct current, while AC stands for alternating current;”) you might be famil-
iar with these terms in relation to the current provided by a battery (constant
and hence DC) and the current available from a mains socket (alternating at
50 or 60 Hz and therefore AC).
For a given sequence x[n], one can always write

x[n]=xac[n]+xpc
where xpc is the mean of the sequence values. Please note the followings:

e The DCvalue of a finite-support signal is the value of its Fourier trans-
form at w = 0 divided by the length of the signal’s support.

e The DC value of an infinite-support signal must be zero for the signal
to be absolutely summable or square summable.

In most signal processing applications, where the input signal comes from
an acquisition device (such as a sampler, a soundcard and so on), it is im-
portant to remove the DC component; this is because the DC offset is often

(MAnd AC/DC for Heavy Metal...
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arandom offset caused by ground mismatches between the acquisition de-
vice and the associated hardware. In order to eliminate the DC component
we need to first estimate it, i.e. we need to estimate the mean of the signal.

For finite-length signals, computation of the mean is straightforward
since it involves a finite number of operations. In most cases, however, we
do not want to wait until the end of the signal before we try to remove its
mean; what we need is a way to perform DC removal on line. The approach
is therefore to obtain, at each instant, an estimate of the DC component
from the past signal values, with the assumption that the estimate converges
to the real mean of the signal. In order to obtain such an estimate, i.e. in or-
der to obtain the average value of the past input samples, both approaches
detailed in Section 5.3 are of course valid (i.e. the Moving Average and the
Leaky Integrator filters) . We have seen, however, that the leaky integrator
provides a superior benefit- cost tradeoff and therefore the output of a leaky
integrator with A very close to one (usually 1073) is the estimate of choice
for the DC component of a signal. The closer A is to one, the more accurate
the estimation; the speed of convergence of the estimate however becomes
slower and slower as A — 1. This can easily be seen from the group delay at
w =0, which is

A
grd{H()} = 7—

Resonator Filter. Letuslook again athow the leaky integrator works. Con-
sider its z-transform:

_1-2
H(z)= 1-2Az71

and notice that what we really want the filter to do is to extract the zero-
frequency component (i.e. the frequency component that does not oscil-
late, that is, the DC component). To do so, we placed a pole near z = 1,
which of course corresponds to z = e/¢ for w = 0. Since the magnitude re-
sponse of the filter exhibits a peak near a pole, and since the peak will be
higher, the closer the pole is to the unit circle, we are in fact amplifying the
zero-frequency component; this is apparent from the plot of the filter’s fre-
quency response in Figure 5.9. The numerator, 1 — A, is chosen such that
the magnitude of the filter at w = 0 is one; the net result is that the zero-
frequency component will pass unmodified while all the other frequencies
will be attenuated. The value of a filter’s magnitude at a given frequency is

often called the gain.
The very same approach can now be used to extract a signal component
at any frequency. We will use a pole whose magnitude is still close to one
(i.e. a pole near the unit circle) but whose phase is that of the frequency we
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Figure 7.19 Pole-zero plots for the leaky integrator and the simple resonator.

want to extract. We will then choose a numerator so that the magnitude
is unity at the frequency of interest. The one extra detail is that, since we
want a real-valued filter, we must place a complex conjugate pole as well.
The resulting filter is called a resonator and a typical pole-zero plot is shown
in Figure 7.19. The z-transform of a resonator at frequency wy is therefore
determined by the pole p = Ae/ 0 and by its conjugate:

Go _ GO
(1-pz Y (1—-p*zY) 1—(2Acoswg)z~!+A2z2

H(z)= (7.24)

The numerator value Gy is computed so that the filter’s gain at +wy is one;
since in this case |H(ef‘“0)) = )H(e‘f‘L’O)), we have

Go=(1-A)y/1+ 22 —2Acos2wy

The magnitude and phase of a resonator with A = 0.9 and w¢ = 7/3 are
shown in Figure 7.20.

A simple variant on the basic resonator can be obtained by considering
the fact that the resonator is just a bandpass filter with a very narrow pass-
band. As for all bandpass filters, we can therefore place a zero at z ==+1 and
sharpen its midband frequency response. The corresponding z-transform
is now

1—2z72
1—(2Acoswy)z L +A2z72

H(z)=G,

with
Go
v/ 2(1 — cos2wy)

The corresponding magnitude response is shown in Figure 7.21.

G =
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Figure 7.20 Frequency response of the simple resonator.
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Figure 7.21 Frequency response of the modified resonator.
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7.4 Filter Structures

We have seen in Section 5.7.2 a practical implementation of a constant-
coefficient difference equation (written in C). That was just one particular
way of translating Equation (5.46) into a numerical procedure; in this Sec-
tion we explore other alternatives for both FIR and IIR and introduce the
concept of computational efficiency for filters.

The cost of a numerical filter is dependent on the number of operations
per output sample and on the storage (memory) required in the implemen-
tation. If we consider a generic CCDE, it is easy to see that the basic building
blocks which make up the recipe for a realizable filter are:

e an addition operator for sequence values, implementing y[n] =
x1[n]+x2[n];

e ascalar multiplication operator, implementing y [n] = ax[n];

e a unit delay operator, implementing y[n] = x[n — 1]. Note that the
unit delay operator is nothing but a memory cell, holding the previous
value of a time-varying quantity.

By properly combining these elements and by exploiting the different pos-
sible decomposition of a filter’s rational transfer function, we can arrive at a
variety of different working implementations of a filter. To study the possi-
bilities at hand, instead of relying on a specific programming language, we
will use self explanatory block diagrams.

Cascade Forms. Recall that a rational transfer function H(z) can always
be written out as follows:

M-1
[Ja-zn2™

H(z)= bol':]j— (7.25)
[Ja-paz™
n=1

where the z,, are the M —1 (complex) roots of the numerator polynomial and
the p, are the N — 1 (complex) roots of the denominator polynomial. Since
the coefficients of the CCDE are assumed to be real, complex roots for both
polynomials always appear in complex-conjugate pairs. A pair of first-order
terms with complex-conjugate roots can be combined into a second-order
term with real coefficients:

(1—az Y)(1-a*z')=1-2Re{a}z ' +|al*z~? (7.26)
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As a consequence, the transfer function can be factored into the product of
first- and second-order terms in which the coefficients are all strictly real;
namely:

M, M,
l_[(l — znz_l)l_[(l —2Re{z,}z7 4|z, 72 72)
H(z)= by ]”vzl =l (7.27)

r N
[ Ja-puz™H] [(1-2Re{pu} 27 +Ipalz?)
n=1 n=1

where M, is the number of real zeros, M, is the number of complex-
conjugate zeros and M, +2M, = M — 1 (and, equivalently, for the poles, N, +
2N, = N —1). From this representation of the transfer function we can obtain
an alternative structure for a filter; recall that if we apply a series of filters

in sequence, the overall transfer function is the product of the single trans-

fer functions. Working backwards, we can interpret (7.27) as the cascade of
smaller sections. The resulting structure is called a cascade and it is partic-
ularly important for IIR filters, as we will see later.

Parallel Forms. Another interesting rewrite of the transfer function is
based on a partial fraction expansion of the type:

Ay
Hz)=S Dpz"+3 —"
zn: " ; 1-ppz~!

-1
+Z B, j‘l Cn ¥4 m—

= (1=pnz7 A= prz™")
where the multiplicity of the three types of terms as well as the relative co-
efficients are dependent (in a non-trivial way) on the original filter coeffi-
cients. This generates a parallel structure of filters, whose outputs are
summed together. The first branch corresponds to the first sum and it is
an FIR filter; a further set of branches are associated to each term in the

second sum, each one of them a first order IIR; the last set of branches is a
collection of second order sections, one for each term of the third sum.

(7.28)

7.4.1 FIR Filter Structures

In an FIR transfer function all the denominator coefficients a, other than
ag are zero; we have therefore:

H(z)=bo+ by z! +- 4+ by z~M-1)

where, of course, the coefficients correspond to the nonzero values of the
impulse response h[n], i.e. b, = h[n]. Using the constitutive elements out-
lined above, we can immediately draw a block diagram of an FIR filter as in
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Figure 7.22. In practice, however, additions are distributed as shown in Fig-
ure 7.23; this kind of implementation is called a transversal filter. Further,
ad-hoc optimizations for FIR structures can be obtained in the the case of
symmetric and antisymmetric linear phase filters; these are considered in
the exercises.

x[n]

Figure 7.22 Direct FIR implementation.

x[n] Z_l . Z_l e Z_l ......... = Z_l

bO bl b2 b3 bM—l

Figure 7.23 Transversal FIR implementation.

7.4.2 1IR Filter Structures

For an IIR filter, all the a,, and b, in (5.46) are nonzero. One possible im-
plementation based on the direct form of the transfer function is given in
Figure 7.24. This implementation is called Direct Form I and it can imme-
diately be seen that the C-code implementation in Section 5.7.2 realizes a
Direct Form I algorithm. Here, for simplicity, we have assumed N = M but
obviously we can set some a;, or b, to zero if this is not the case.

By the commutative properties of the z-transform, we can invert the or-
der of computation to turn the Direct Form I structure into the structure
shown in Figure 7.25 (shown for a second order section); we can then com-
bine the parallel delays together to obtain the structure in Figure 7.26. This
implementation is called Direct Form II; its obvious advantage is the re-
duced number of the required delay elements (hence of memory storage).
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Filter Structures

bo
x[n] ® ® yin]
z71 z71
bl a
0 O
z71 z71
bz a
y : : i
z71 : : z71
by | ‘ —am-1
Figure 7.24 Direct Form implementation of an IIR filter.
) S
x[n] W, () y(n]
z71 z71
—a bl

_az

O—=

O——

z~1

b,

Figure 7.25 Direct form I with inverted order.
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bo
) )
i\ i\
271
- b
\ a) 1 /
GJ \9
271
—dy bg

Figure 7.26 Direct Form Il implementation of a second-order section.

The second order filter

H(z)=

1+b1 z~! +b2Z_2

l—a;z™

I —ay,z~

2

which gives rise to the second order section displayed in Figure 7.26, is par-
ticularly important in the case of cascade realizations. Consider the factored
form of H(z) as in (7.27): if we combine the complex conjugate poles and
zeros, and group the real poles and zeros in pairs, we can create a modular
structure composed of second order sections. For instance, Figure 7.27 rep-
resents a 4th order system. Odd order systems can be obtained by setting
some of the a,, or b, to zero.

bl,O

n—()

N\

z-1

(D——

z-1

—aiz2

b1,2

M\
i\

b2,0
@—W [n]

z~1

—az1
(D—

z~1

—dazp2

b2,2

Figure 7.27 4th order IIR: cascade implementation.
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7.4.3 Some Remarks on Numerical Stability

A very important issue with digital filters is their numerical behavior for a
given implementation. Two key questions are:

e Assume the computations are made with (basically) infinite precision
but that the filter coefficients are represented internally with finite
precision. How good is the resulting filter? Is it still stable?

¢ If computations are also made with finite precision arithmetic (which
implies rounding and truncation error), what is the resulting numeri-
cal behavior of the system?

One important difference is that, in the first case, the system is at least guar-
anteed to be linear; in the second case, however, we can have non-linear
effects such as overflows and limit cycles.

Precision and computational issues are very hard to analyze. Here, we
will just note that the direct form implementation is more sensible to pre-
cision errors than the cascade form, which is why the cascade form is usu-
ally preferred in practice. Moreover, alternative filter structures such as the
lattice are designed to provide robustness for systems with low numerical
precision, albeit at a higher computational cost.

7.5 Filtering and Signal Classes

The filtering structures that we have shown up to now are general-purpose
architectures which apply to the most general class of discrete-time sig-
nals, (infinite) sequences. We now consider the other two main classes of
discrete-time signals, namely finite-length signals and periodic sequences,
and show that specialized filtering algorithms can be advantageously put to
use.

7.5.1 Filtering of Finite-Length Signals

The convolution sum in (5.3) is defined for infinite sequences. For a finite-
length signal of length N we may choose to write simply:

N-1

yInl=s{xnl} = x[klhln -k (7.29)
k=0

i.e. we let the summation index span only the indices for which the signal is
defined. It can immediately be seen, however, that in so doing we are actu-
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ally computing y [n] = X [n]* h[n], where X[n] is the finite support extension
of x[n] as in (2.24)); that is, by using (7.29), we are implicitly assuming a
finite support extension for the input signal.

Even when the input is finite-length, the output of an LTI system is not
necessarily a finite-support sequence. When the impulse response is FIR,
however, the output has finite support; specifically, if the input sequence
has support N and the impulse response has support L, the support of the
outputis N+ L—1.

7.5.2 Filtering of Periodic Sequences

For periodic sequences, the convolution sum in (5.3) is well defined so there
is no special care to be taken. It is easy to see that, for any LTI system, an
N-periodic input produces an N-periodic output. A case of particular in-
terest is the following: consider a length-N signal x[n] and its N-periodic
extension X[n]. Consider then a filter whose impulse response is FIR with
a length-N support; if we call h[n] the length-N signal obtained by con-
sidering only the values of the impulse response over its finite support, the
impulse response of the filter is l_z[n] (see (2.24)). In this case we can write

00 N-1
e Z ﬂk]h[n—k]:Zh[k]x[(n—k) mod N] (7.30)
k=0

k=—00

Note that in the last sum, only the first period of %[n] is used; we can there-
fore define the sum just in terms of the two N-point signals x[n] and h[n]:

N-1
ylnl =Y hlklx[(n - k) mod N] (7.31)
k=0

The above summation is called the circular convolution of x[n] and h[n]
and is sometimes indicated as

yln]=x[n]® h[n]

Note that, for periodic sequences, the convolution as defined in (5.8) and the
circular convolution coincide. The circular convolution, just like the stan-
dard convolution operator, is associative and commutative:

x[n]® h{n]=h[n]®x[n]
(h[n]+ fln]) ® x[n] = h[n] @ x[n] + f[n] ® x[n]

as is easily proven.
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Consider now the output of the filter, expressed using the commutative
property of the circular convolution:

N-1
yhﬂ=§:xMMKn—k)mmUﬂ
k=0
Since the output sequence j[n] is itself N-periodic we can consider the
finite-length signal y[n] = j[n], n =0,..., N — 1, i.e. the first period of the
output sequence. The circular convolution can now be expressed in matrix
form as

y=Hx (7.32)

where y, x are the usual vector notation for the finite-length signals y [n], x[n]
and where

[ mjo]  KIN=1] RIN-2] ... h[2] R[]]
hl1] no]  hIN=1] ... h[3] h[2]

H=| . T (7.33
hIN=1] hIN-2] AIN=3] .. k1] h[o]]

The above matrixis called a circulant matrix, since each row is obtained by a
right circular shift of the previous row. A fundamental result, whose proof is
left as an exercise, is that the length- N DFT basis vectors w(*) defined in (4.3)
are left eigenvectors of N x N circulant matrices:

(W) "H= H[k]w®

where H[k] is the k-th DFT coefficient of the length-N signal h[n], n =
0,...,N — 1. If we now take the DFT of (7.32) then

Y=WHx=TWx=IX
with
I =diag(HI[0], H[1],..., H[N —1])
or, in other words
Y[k] = H[k]X[k] (7.34)

We have just proven a finite-length version of the convolution theorem; to
repeat the main points:

¢ The convolution of an N-periodic sequence with a N-tap FIR impulse
response is equal to the periodic convolution of two finite-length sig-
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nals of length N, where the first signal is one period of the input and
the second signal is the values of the impulse response over the sup-
port.

e The periodic convolution can be expressed as a matrix-vector product
in which the matrix is circulant.

e The DFT of the circular convolution is simply the product of the DFTs
of the two finite-length signals; in particular, (7.34) can be used to eas-
ily prove the commutativity and distributivity of the circular convolu-
tion.

The importance of this particular case of filtering stems from the follow-
ing fact: the matrix-vector product in (7.32) requires O(N?) operations. The
same product can however be written as

1
y=%5 WHTWx = DFT"'{I' DFT{x}}

which, by using the FFT algorithm, requires approximately N + 2Nlog, N
operations and is therefore much more efficient even for moderate values
of N. Practical applications of this idea are the overlap-save and overlap-
add filtering methods, for a thorough description of which see [2]. The basic
idea is that, in order to filter a long input sequence with an N-tap FIR fil-
ter, the input is broken into consecutive length-N pieces and each piece,
considered as the main period of a periodic sequence, is filtered using the
FFT strategy above. The difference between the two methods is in the subtle
technicalities which allow the output pieces to bind together in order to give
the correct final result.

Finally, we want to show that we could have quickly arrived at the same
results just by considering the formal DTFTs of the sequences involved; this
is an instance of the power of the DTFT formalism. From (4.43) and (4.44)
we obtain:

Y(e/®)= H(e/*)X(e!®)
N-1
_ (ZH[k]A(a)—%k)) (%Z:X[kﬁ (w—%k))
- Z HIKIX[k]§ (a) _r k) (7.35)

where the last equality results from the sifting property of the Dirac delta
(see (4.31)) and the fact that A(0) = 1. In the last expression, the DTFT of a
periodic sequence whose DFS coefficients are given by H[k]X[k], is easily
recognezed.
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Example 7.1: The Goerizel filter

Consider the IR structure shown in Figure 7.28; the filter is called a Goertzel
filter, and its single coefficient (which is also the only pole of the system) is
the k-th power of the N-th root of unity Wy = e~/27/N_ Note that, contrary
to what we have seen so far, this is a complex-valued filter; the analysis of
this type of structure however is identical to that of a normal real-valued
scheme.

As we said, the only pole of the filter is on the unit circle, so the system is
not stable. We can nevertheless compute its impulse response, a task which
is trivial in the case of a one-pole IIR; we assume zero initial conditions and
we use the difference equation directly: by setting x[n] =6[n] in

ylnl=x[n]+ Wy yln—1]
and by working out the first few iterations, we obtain
h[n] = Wy k" uln]

Note that the impulse response is N-periodic (a common trait of sequences
whose poles are on the unit circle).

x[n] ® yin]

an—k

Figure 7.28 The Goertzel filter.

Assume now we have a length-N signal x[r] and we build a finite-support
extension x[n] so that X[n] =0 for n <0, n > N and %[n] = x[n] otherwise.
If we process such a signal with the Goertzel filter we have

y[0] = x[0]

y[1]=x[1]+ Wy ¥ x[0]

y[2] = x[2] + Wy K x[1] + W2 x[0]
]

y[3]=x[3]+ Wy F x[2] + Wy 2K x[1] + Wy, 3F x[0]
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so that finally:
N—
yINI= Z N xln) = Zx ] Wik = X[k]
n=0

that is, the output at time n = N is the k-th DFT coefficient of x[n]. The
Goertzel filter is therefore a little machine which allows us to obtain one
specific Fourier coefficient without needing to compute the whole DFT. As
a filter, its usage is nonstandard, since its delay element must be manually
reset to zero initial conditions after each group of N iterations. Goertzel
algorithm is used in digital detectors of DTMF tones.

Example 7.2: Filtering and numerical precision

Digital filters are implemented on general-purpose microprocessors; the
precision of the arithmetics involved in computing the output values de-
pends on the intrinsic word length in the digital architecture, i.e. in the num-
ber of bits used to represent both the data and the filter coefficients. To il-
lustrate some of the issues related to numeric precision consider the case
of an allpass filter. The magnitude response of an allpass filter is constant
over the entire [—m, 7] interval, hence the name. Such filters are often used
in cascade with other filters to gain control on the overall phase response of
the system.

Consider the filter described by the following difference equation:

ylnl=ay[n—1]—ax[n]+x[n—1]
with 0 < a < 1. The transfer function H(z) is

—a+z7! 1-(1/a)z7!
=—qa

H(z)= I

l1—az™

and the filter is indeed allpass since:

|H(z)|" = H(2)H'(2)
_—a+z7! —a+(z71)"
T 1l-az ' 1-a(z)*

a?—aRe{z71}+ |z—1 }2

052|z—1|2 —aRef{z 1} +1
for z = e/ (and therefore |z~ !| = 1):

|H(e?)' =|H(e/®)| =1
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x{n] O= (O——vin

a —l/a

Figure 7.29 Allpass filter Direct Form II implementation.

The filter can be implemented in Direct Form II as in Figure 7.29. Note that
the two coefficients of the filter are o and 1/a so that, if & is small then 1/«
will be big, and vice versa. This creates a problem in a digital architecture
in which the internal representation has only a small number of bits. Call
£1{-} the operator which associates a real number to the closest value in
the architecture’s internal representation; the process is called quantization
and we will study it in more detail in Chapter 10. The transfer function with
quantized coefficients becomes

1-2{1/atz7!  —a+pz!
1-2{a}z! 1—-az!

Ho(z)= 2{—a}

where 8 = 2{a}2{1/a}. If the quantization is done with too few bits, f # 1
and the filter characteristic is no longer allpass. Suppose for instance that
the filter uses four bits to store its coefficients using an unsigned fixed point
2.2 format; the 16 possible values are listed in Table 7.1.

Table 7.1 Binary-decimal conversion table for fixed-point 2.2 notation.

binary | decimal binary | decimal
0000 0.00 1000 2.00
0001 0.25 1001 2.25
0010 0.50 1010 2.50
0011 0.75 1011 2.75
0100 1.00 1100 3.00
0101 1.25 1101 3.25
0110 1.50 1110 3.50
0111 1.75 1111 3.75

If a = 0.4 we have that 2{0.4} =0010=0.5, 2{1/0.4} = 2{25}=1010=2.5
and therefore § =0101 =1.25# 1.
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It is important to point out that the numerical stability of a filter is depen-
dent on the chosen realization. If we rewrite the allpass difference equation
as

yinl=a(y[n-1]-x[n])+x[n-1]

we can a block diagram as in Figure 7.30 which, although a non-canonical
form, implements the filter with no quantization issues independently of a.
Note that the price we pay for robustness is the fact that we have to use two

delays instead of one.
Z—l
-1 a ’

x[n] ® ©, yln]

Figure 7.30 Allpass filter Direct Form II implementation.

Example 7.3: A guitar synthesizer

We have encountered the Karplus-Strong algorithm in Example 2.2. A prac-
tical implementation of the algorithm is shown in Figure 7.31; it is a quite
peculiar filter structure since it has no input! Indeed assume there are N
delays in cascade and neglect for a moment the filter H(z); the structure
forms a feedback loop in which the N values contained in the delay units at
power-up are endlessly cycled at the output. By loading the N delay units
with all sorts of finite-length sequences we can obtain a variety of different
sounds; by changing N we can change the fundamental frequency of the
note.

H(z) +—y[n]

z7l e 2zt | z7! je—.« z7! |~ z!

Figure 7.31 Karplus-Strong implementation.

The detailed analysis of a waveform generated by the device in Figure 7.31 is
complicated by the fact that the filter does not have zero initial conditions.
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Intuitively, however, we can easily appreciate that we can use the filter to
simulate a natural decay in the waveform; imagine H(z) =a with0<a < 1:
at each passage through the feedback loop the values in the delay line are
scaled down exponentially. More complicated filters can be used to simu-
late different types of acoustic decay as long as |H(ef ‘L’)| < 1 over the entire
[—m, 7] interval.

Further Reading

Filter design has been a very popular topic in signal processing, with a large
literature, a variety of software designs, and several books devoted to the
topic. As examples, we can mention R. Hamming’s Digital Filters (Dover,
1997), and T. W. Parks and C. S. Burrus, Digital Filter Design (Wiley-Inter-
science, 1987), the latter being specifically oriented towards implementa-
tions on a digital signal processor (DSP). All classic signal-processing books
cover the topic, for example Oppenheim and Schafer’s book Discrete-Time
Signal Processing (Prentis Hall, 1999) gives both structures and design meth-
ods for various digital filters.

Exercises

Exercise 7.1: Discrete-time systems and stability. Consider the sys-
tem in the picture below. Assume a causal input (x[n] = 0 for n < 0) and
zero initial conditions.

Yoln]
o O—rin

x[n]

nln]
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(a) Find the constant-coefficients difference equations linking yo[n], y1 (7]
and y[n] to the input x[n].

(b) Find Hy(z), Hi(z) and H(z), the transfer functions relating the input
x[n] to the signals yy[n], y1[n] and y[n], respectively.

(c) Consider the relationship between the input and the output; is the
system BIBO stable?

(d) Is the system stable internally? (i.e. are the subsystems described by
Hy(z) and H;(z) stable?)

(e) Consider the input x[n] = u[n], where, as usual, u[n] =1forn >0
and u[n] =0 for n < 0. How do yy[n], y1[n] and y[n] evolve over time?
Sketch their values.

(f) Suppose the above system is implemented in practice with finite-
precision arithmetic (say 16 bits). Would it work as planned?

Exercise 7.2: Filter properties — . Assume ¥ is a stable, causal IIR fil-
ter with impulse response g[n] and transfer function G(z). Which of the
following statements is/are true for any choice of G(z)?

(a) The inverse filter, 1/G(z), is stable.
(b) The inverse filter is FIR.
(c) The DTFT of g[n] exists.

(d) The cascade G(z)G(z) is stable.

Exercise 7.3: Filter properties - Il. Consider G(z), the transfer function
of a causal stable LTI system. Which of the following statements is/are true
for any such G(z)?

(a) The zeros of G(z) are inside the unit circle.
(b) The ROC of G(z) includes the curve |z| =0.5.
(c) The system H(z)=(1—-3z"1)G(z) is stable.

(d) The system is an IIR filter.
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Exercise 7.4: Fourier fransforms and filtering. Consider the following
signal:

] {(—1)("/2)Jrl for n even
x[n]=

for n odd
(a) Sketch x[n] in time.

(b) Which is the most appropriate Fourier representation for x[n]? (DFT,
DEFS, DTFT?) Explain your choice and compute the transform.

(c) Compute the DTFT of x[n], X(e/«), and plot its magnitude and phase.
(d) Consider a filter with the impulse response

hin] = sinn
mn

and compute y[n] =x[n]* h[n].

Exercise 7.5: FIR filters. Consider the following set of complex numbers:
zp = el717271), k=1,2,...,M
For M =4,
(@) Plot z¢, k=1,2,3,4, on the complex plane.
(b) Consider an FIR whose transfer function H(z) has the following zeros:
{z1, 22, 2%, 25, -1}
and write out explicitly the expression for H(z).
(c) How many nonzero taps does the impulse response h[n] have at most?

(d) Sketch the magnitude of H(e/®).

(e) What can you say about this filter: What FIR type is it? (I, II, etc.)
Is it lowpass, bandpass, highpass?
Is it equiripple?

Is this a “good” filter? (By “good” we mean a filter which is close to 1 in
the passband, close to zero in the stopband and which has a narrow
transition band.)
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Exercise 7.6: Linear-phase FIR filter structure. Assume H(z) is a Type
III FIR filter. One of the zeros of the filter is at zo = 0.8+ 0.1 j. You should be
able to specify another five zero locations for the filter. Which are they?

Exercise 7.7: FIR filters analysis - I. Consider a causal FIR lowpass filter
with the following transfer function:

H(z)=0.0054+0.03z"'+0.112724+0.22z73+0.27z %+
+0.2227°4+0.1127°40.03277 +0.0052%

whose magnitude response is plotted in the following figure between 0
and 7:

O T T T
0 n/4 21/4 3n/4 T

while the following figure displays an enlarged view of the passband and
stopband:

1.1

0.012 1
0.9
0.008 1
0.7 0.004 1
0.5 0
0 n/4 /2 T

(a) Is the filter linear phase? If so, what type is it (I, II, III, IV)?
(b) What is the group delay of the filter?

(c) Isthe filter optimal (in the sense of Parks-McClellan)? Justify your an-
Swer.



212 Exercises

We will now explore some filters which can be obtained from H(z):

(d) Sketch the magnitude response of a filter g[n] whose taps are as fol-
lows:

g[n]=1{0.005,0,—0.11, 0, 0.27, 0, —0.11, 0, 0.005}

(i.e. g[0] =0.005, g[1] =0, g[2] =—0.11, etc.)

We now want to obtain a linear phase highpass filter f[n] from h[n] and the
following design is proposed:

x[n] H(z) (H—vin]
+

However the design is faulty:

(e) From the impulse response of the above system, show that the result-
ing filter is not linear phase.

(f) Clearly, the designer’s idea was to obtain a system with magnitude
|F(ef°°)) = |1 - |H(ef‘°)|) (note the magnitude signs around H(e/®));
this, however, is not the magnitude response of the above system.
Write out the actual magnitude response.

(Hint: it is easier to consider the squared magnitude response and,
since H(e/®)is linear phase, to express H(e/®) as a real term A(e/®) €
R, multiplied by a pure phase term.)

Now it is your turn to design a highpass filter:

(g) How would you modify the above design to obtain a linear phase high-
pass filter?

(h) Sketch the magnitude response of the resulting filter.

Exercise 7.8: FIR filters analysis - ll. Consider a generic N-tap Type I FIR
filter. Since the filter is linear phase, its frequency response can be expressed
as

H(e/®)=A(e!“)H,(e’®)

where H,(e/®)is a real function of w and A(e/®) is a pure phase term.
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(a) Specify A(e/®) so that the filter is causal; i.e. find the phase term for
which the impulse response h[n] is nonzero onlyfor0<n <N —1.

Now consider a specific N-tap Type-I FIR filter designed with the Parks-
McClellan algorithm. The real part H,(e/®) for the causal filter is plotted
in the following figure.

0 n/4 21/4 3n/4 T

(b) What is the number of coefficients N for this specific filter? (The filter
is not extraripple.)

(c) One zero of the filter’s transfer function is at zo =1.84 0.4 j. Sketch
the complete pole-zero plot for the filter.

We now modify the causalfilter H(e/*) to obtain a new causal filter H;(e/©);
the real part of the new frequency response is plotted as follows:

0 n/4 21/4 3n/4 T

(d) Assume you know the original impulse response k[n]; show how you
can modify h[n] to obtain h;[n].

(e) What type is the new filter?
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Exercise 7.9: lIR filtering. Consider a causal IIR filter with the following
transfer function:

1+2z71

H(z)=
(2) 1-1.6 cos(2m/7)z"1 +0.64z72

(a) Sketch the pole-zero plot of the filter and the ROC of its transfer func-
tion.

(b) Sketch the magnitude of its frequency response.

(c) Draw at least two different block diagrams which implement the filter
(e.g. direct forms I and II).

(d) Compute the first five values (for n = 0,1,...,5) of the signal y[n] =
h[n]*x[n], where x[n] = 6[n]+206[n — 1]. Assume zero initial condi-
tions.

Exercise 7.10: Generdlized linear phase filters. Consider the filter
given by H(z)=1-2z"".

(a) Show that H(z) is a generalized linear phase filter, i.e. that it can be
written as

Give the corresponding group delay d and the phase factor a.
(b) What type of filter is it (I, II, III or IV)? Explain.

(c) Give the expression of h[n] and show that it satisfies

Zh[n] sin(w(n—d)+a)=0

for all w.

(d) More generally, show that any generalized linear phase filter #[n] must
satisfy

Zh[n] sin(w(n—d)+a)=0

for all w. The above expression is, thus, a necessary condition for a
filter to be generalized linear phase.
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Exercise 7.11: Echo cancellation. In data communication systems
over phone lines (such as voiceband modems), one of the major problems is
represented by echos. Impedance mismatches along the analog line create
delayed and attenuated replicas of the transmitted signal. These replicas are
added to the original signal and represent one type of distortion.

Assume a simple situation where a single echo is created; the transmitted
signal is x[n] and, because of the echo, the received signal is

y[n]l=x[n]—ax[n— D]

where a is the attenuation factor (with 0 < a < 1) and D is the echo delay
(assume D is an integer).

(a) Write the transfer function H(z) of the “echo system”, i.e. the system
which produces y [n] from x[n].

(b) Sketch the pole-zero plot for H(z) for @ =0.1 and D = 12 (for our pur-
poses, assume (0.826)!2 =0.1).

(c) Sketch the squared magnitude response |H(ef ‘“)|2.

Now assume we have a good estimate of ¢ and D; we want to design a causal
echo cancellation filter, i.e. a filter with causal impulse response g[n] such
that y[n]* g[n] = x[n].

(d) Write the expression for G(z).

(e) Sketch its pole-zero plot and its ROC for the same values of a and D
as before.

(f) Whatis the practical difficulty in implementing this echo cancellation
system?

Exercise 7.12: FIR filter design - I. Is it a good idea to use a Type III FIR
to design a lowpass filter? Briefly explain.

Exercise 7.13: FIR filter design - ll. Suppose you want to design a linear
phase FIR approximation of a Hilbert filter. Which FIR type would you use?
Why? Discuss advantages and disadvantages.
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Chapter 8

Stochastic Signal Processing

In the previous Chapters, the signals we considered were all deterministic
signals in the sense that they could either be expressed in analytic form
(such as x[n] = (1 — A)A") or they could be explicitly described in terms of
their samples, such as in the case of finite-length signals. When designing
a signal processing system, however, it is very rare that we know exactly the
expression for the set of all the possible input signals (in some sense, if we
did, we would not need a processing system at all.) Fortunately, very often
this set can be characterized in terms of the statistical properties of its mem-
ber signals; this entails leaving the domain of deterministic quantities and
entering the world of stochastic processes. A detailed and rigorous treat-
ment of statistical signal processing is beyond the scope of this book; here,
we only consider elementary concepts and restrict ourselves to the discrete-
time case. We will be able to derive that, fundamentally, in the case of sta-
tionary random signals, the standard signal processing machinery that we
have seen so far (and especially the usual filter design techniques) is still ap-
plicable with very intuitive results. To establish a coherent notation, we start
by briefly reviewing some elementary concepts of probability theory.

8.1 Random Variables

Probability Distribution. Consider a real-valued random variable X tak-
ing values over R. The random variableV) is characterized by its cumulative
distribution function Fx (cdf) which is defined as

Fx(a)=P[X<a], aeR

(UNote that in this Chapter, random quantities will be indicated by uppercase variables.
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that is, Fx(a) measures the probability that X takes values less than or equal
to a. The probability density function (pdf) is related to the cdf (assuming
that Fx is differentiable) as

d Fx(a)
da

fx(@)=

, aceR

and thus

FX(a)=f fx(x)dx, aeR

Expectation and Second Order Statistics. For random variables, a
fundamental concept is that of expectation, defined as follows:

E[X]= f xfx(x)dx

The expectation operator is linear; given two random variables X and Y, we
have

ElaX+bY]=aE[X]+ bE[Y]

Furthermare, given a function g : R — R, we have

00

E[g(X)] :f g(x)fx(x)dx

—0Q

The expectation of a random variable is called its mean, and we will indicate
it by mx. The expectation of the product of two random variables defines
their correlation:

Rxy=E[XY]
The variables are uncorrelated if
E[XY]=E[X]E[Y]
Sometimes, the “centralized” correlation, or covariance, is used, namely

Kxy =E[(X — mx)(Y — my)]
= E[XY] — E[X]E[Y]

Again, the two variables are uncorrelated if and only if their covariance is
zero. Note that if two random variables are independent, then they are also
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uncorrelated. The converse, however, is not true; in other words, statistical
independence is a stronger condition than decorrelation.®
The variance of a random variable X, denoted by 0%, is defined as

0% =E[(X—mx)*]

The square root of the variance, oy, is often called the standard deviation
of X.

Example: Gaussian Random Variable. A Gaussian random variable
is described by the probability density function:

fX)=——=e 27, xER (8.1)

which is known as the normal distribution. Clearly, the mean of the Gaus-
sian variable is m, while its variance is 2. The normalization factor

1/y/2no? ensures that, as for all random variables, the integral of the pdf
over the entire real line is equal to one.

8.2 Random Vectors

Probability Distribution. A random vector Xis a collection of N random
variables [X, X; ... Xy_1] T with a cumulative distribution function Fx
given by

Kl@)=2[X;<a;, i=0,1,...,N—1]

where @ =[ay @ ... an_]  €RN. The pdfis obtained, assuming dif-
ferentiability, as
oN

fx(a)= Ga0.0ar... Oan F(ag,a,...,an-1)

With respect to vector random variables, two key notions are:

¢ independent elements: a collection of N random variables is inde-
pendent if and only if the joint pdf has the form:

Ixoxi-xno (X0, X150, XN-1) = [xo(X0) - fx,(x1) -+ fxy_, (Xn-1) (8.2)

@A special case is that of Gaussian random variables, for which independence and decor-
relation are equivalent.



220 Random Vectors

o ii.d. elements: a collection of N random variables is independent
and identically distributed (i.i.d.) if the variables are independent and
each random variable has the same distribution:

fxi(xi) = f(x;), i=0,1,...,N—1

Random vectors represent the generalization of finite-length, discrete-time
signals to the space of random signals.

Expectation and Second Order Statistics. For random vectors, the
definitions given, in the case of random variables, extend immediately to
the multidimensional case. The mean of a N-element random vector X is
simply the N-element vector:

EX|=[E[Xo] E[X)] ... E[Xy]]"
=[mXO mx, ... mXNfl]T
=myx

The correlation of two N-element random vectors is the N x N matrix:
Rxy = E[XY']

where the expectation operator is applied individually to all the elements of
the matrix XY”. The covariance is again:

Kxy = E[(X—mx)(Y—my)"]

and it coincides with the correlation for zero-mean random vectors. Note
that the general element Rxy(k, /) indicates the correlation between the k-
th element of X and the /-th element of Y. In particular, Rxx(k, /) indicates
the correlation between elements of the random vector X; if the elements
are uncorrelated, then the correlation matrix is diagonal.

Example: Jointly Gaussian Random Vector. An important type of
vector random variable is the Gaussian random vector of dimension N. To
define its pdf, we need a length- N vector m and a positive definite matrix A
of size N x N. Then, the N-dimensional Gaussian pdf is given by

fx)= 1 leemaeem) xRN (8.3)
V(2N [A]

where [A| is the determinant of A. Clearly, m is the vector of the means of
the single elements of the Gaussian vector while A is the autocorrelation
matrix. A diagonal matrix implies the decorrelation of the random vector’s
elements; in this case, since all the elements are Gaussian variables, this also
means that the elements are independent. Note how, for N =1 and A =02,
this reduces to the usual Gaussian distribution of (8.1).
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8.3 Random Processes

Probability Distribution. Intuitively, a discrete-time random process is
the infinite-dimensional generalization of a vector random variable, just like
a discrete-time sequence is the infinite generalization of a finite-length sig-
nal. For a random process (also called a stochastic process) we use the no-
tation X[n] to indicate the n-th random variable which is the n-th value
(sample) of the sequence.® Note however that the pdf associated to the
random process is the joint distribution of the entire set of samples in the
sequence; in general, therefore, the statistical properties of each sample de-
pend on the global stochastic description of the process and this accounts
for local and long-range dependencies in the random data. In fact, consider
arandom process {X[n], n € Z}; any finite subset of random variables from
X[n] is a vector random variable X = [X[io] X[i1] ... X[ix_1]]"> k €N.
The statistical description of a random process involves specifying the joint
pdf for X for all k-tuples of time indices i and all k € N, i.e. all the pdfs of
the form

FXtio)Xtin)-Xlix_11(X0, X1, . Xg—1) (8.4)

Clearly, the most general form of random process possesses a statistical de-
scription which is difficult to use. At the other extreme, the simplest form of
stochastic process is the i.i.d. process. For an i.i.d. process we have that the
elements of X are i.i.d. for all k-tuples of time indices i; and all k €N, that is

k=1
IXtiolXUir]-X[ix-1](X0, X1, ., X—1) = l_[f(xi) (8.5)
i=0
where f(x) is called the pdf of the i.i.d. process.

Second Order Description. The mean of a process X[n], n € Z is simply
E[X[n]] which, in general, depends on the index n. The correlation (also
called the autocorrelation) of X[#n] is defined as

RX[l,k]zE[X[l]X[k]], l,kez
while its covariance (also called autocovariance)? is
Kx[l, k]l =E [(X[1] — mx1) (X[k] — my(x)) ]
= Rx[l, k] — mxymxk, lLkeZ

®Again, in this Chapter we use uppercase variables to stress the random nature of a
stochastic signal. This will not be strictly enforced in later Chapters.

@The term autocovariance is rarely used; the “auto-” forms of correlation and covari-
ance are meant to stress the difference with the cross-correlation and cross-covariance),
which involve two distinct random processes.
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Finally, given two random processes X[n] and Y[n], their cross-correlation
is defined as

Rxyll, k] =E[X[I] Y[k]] (8.6)

Mean and variance of a random process represent a second order description
of the process since their computation requires knowledge of only the sec-
ond order joint pdf of the process (i.e. of the pdfs in (8.4) involving only two
indices ix). A second order description is physically meaningful since it can
be associated to the mean value and mean power of the random process, as
we will see.

Stationary Processes. A very important class of random processes are
the stationary processes, for which the probabilistic behavior is constant over
time. Stationarity, in the strict sense, implies that the full probabilistic de-
scription of the process is time-invariant; for example, any i.i.d. process is
also a strict-sense stationary process. Stationarity can be restricted to n-th
order stationarity, meaning that joint distributions (and therefore expecta-
tions) involving up to n samples are invariant with respect to a time shift.
The case n =2 is particulary important and it is called wide-sense stationar-
ity (WSS). For a WSS process, the mean and the variance are constant over
time:

E[X[n]] = myx, nez (8.7
E[(X[n] - mx)*] =0%, nez 8.8)

and the autocorrelation and covariance depend only on the time lag (I — k):

Rx[l, k] = rx[l — kI, l,keZ (8.9)
Kxll, k] = kx[l — k], l,keZ (8.10)

Finally, note that if X[r] and Y[n] are both stationary processes, then their
cross-correlation depends only also on the time lag:

Rxyll, k] =rxy[l — k]

Ergodicity. In the above paragraphs, it is important to remember that ex-
pectations are taken with respect to an ensemble of realizations of the pro-
cess under analysis. To visualize the concept, imagine having a black box
which, at the turn of a switch, can generate a realization of a discrete-time
random process X[n]. In order to estimate the mean of the process at time
ng, i.e. E [X [no]], we need to collect as many realizations as possible and
then estimate the mean at time n( by averaging the values of the process at
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ny across realizations. For stationary processes, it may seem intuitive that
instead of averaging across realizations, we can average across successive
samples of the same realization. This is not true in the general case, how-
ever. Consider for instance the process

X[nl=a

where ¢ is a random variable. Clearly the process is stationary since each
realization of this process is a constant discrete-time signal, but the value of
the constant changes for each realization. If we try to estimate the mean of
the process from a single realization, we obtain no information on the dis-
tribution of ¢; that can be achieved only by looking at several independent
realizations.

The class of processes for which it is legitimate to estimate expectations
from a single realization is the class of ergodic processes. For ergodic pro-
cesses we can, for instance, take the time average of the samples of a single
realization and this average converges to the ensemble average or, in other
words, it represents a precise estimate of the true mean of the stochastic
process. The same can be said for expectations involving the product of
process samples, such as in the computation of the variance or of the corre-
lation.

Ergodicity is an extremely useful concept in the domain of stochastic
signal processing since it allows us to extract useful statistical information
from a single realization of the process. More often than not, experimental
data is difficult or expensive to obtain and it is not practical to repeat an
experiment over and over again to compute ensemble averages; ergodicity
is the way out this problem, and it is often just assumed (sometimes without
rigorous justification).

Example: Gaussian Random Processes. A Gaussian random process
is one for which any set of samples is a jointly Gaussian random vector. A
fundamental property of a Gaussian random process is that, if it is wide-
sense stationary, then it is also stationary in the strict sense. This means that
second order statistics are a sufficient representation for Gaussian random
processes.

8.4 Spectral Representation
of Stationary Random Processes
Given a stationary random process, we are interested in characterizing

its “energy distribution” in the frequency domain. Note that we have used
quotes around the term energy: since a stationary process does not decay in
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time (because of stationarity), it is rather intuitive that its energy is infinite
(very much like a periodic signal). In other words, the sum:

M
D X2[n]
ne—_
diverges in expectation. Signals which are not square-summable are not
absolutely summable either, and therefore their Fourier transform does not
exist in the standard sense. In order to derive a spectral representation for a
random process we thus need to look for an alternative point of view.

8.4.1 Power Spectral Density

In Section 2.1.6 we introduced the notion of a power signal, particularly in
relation to the class of periodic sequences; while the total energy of a power
signal may be infinite, its energy over any finite support is always finite and
it is proportional to the length of the support. In this case, the limit:

M
. 1 2
lim Z }x[n]}
M- 2M+1 4

n=—M
is finite and it represents the signal’s average power (in time). Stationary
random processes are themselves power signals if their variance is finite;

indeed (assuming a zero-mean process), we have

gl MXZ[]]— 1 ME[XZ[]]
[ZM—H”:Z_M ”J_2M+1n;M "
M

1
2
= o)
2M+1 _Z
n=—M

=0'2

so that the average power (in expectation) for a stationary process is given
by its variance.

For signals (stochastic or not) whose power is finite but whose energy is
not, a meaningful spectral representation is obtained by considering the so-
called power spectral density (PSD). We know that, for a square-summable
sequence, the square magnitude of the Fourier transform represents the
global spectral energy distribution. Since the energy of a power signal is
finite over a finite-length observation window, the truncated Fourier trans-
form

M

Xu(el®)= Z x[n]e 7en (8.11)
n=—M
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exists, is finite, and its magnitude is the energy distribution of the signal over
the time interval [—M, M]. The power spectral density is defined as

P(el®)= lim { )XM(efw)) } (8.12)

2M+1
and it represents the distribution of power in frequency (and therefore its
physical dimensionality is expressed as units of energy over units of time
over units of frequency). Obviously, the PSD is a 2r-periodic real and non-
negative function of w.

It can be shown that the PSD of an N-periodic stationary signal §[n] is
given by the formula:

P(e®) :NZ_I)S[k]F 5 (co _zn k)

k=0

where all the S[k] are the N DFS coefficients of s[n]; this is rather intuitive
since, for a periodic signal, the power is distributed only over the harmonics
of the fundamental frequency. Conversely, the PSD of a finite-energy deter-
ministic signal is obviously zero since its power is zero.

8.4.2 PSD of a Stationary Process

For stationary random processes the situation is rather interesting. If we
rewrite (8.11) for the WSS random process X[n], the quantity:

M 2

Z X[n]e ien

n=—M

|XM(€jw)|2=

which we could call a “local energy distribution”, is now a random variable
itself parameterized by w. We can therefore consider its mean value and we
have

E [[Xa(e/)[*| =[x, (e7)Xn(e/)]

Z X[n]elen Z X[m]e‘f“’m}

=E

| — |

n=—M m=—M

M
Z E[X[n]X[m]] e /@t
e

Z rxlm — n] e~ i@tm-n

||| ME ||| ME
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Now, with the change of variable k = n—m and some simple considerations
on the structure of the above sum, we obtain:
E[[Xue )] = > @M+1-|kl)rxlkle ok
k=—2M
The power spectral density is obtained by plugging the above expression
into (8.12), which gives

. 1 N2
joy= i jo
Px(e®) I\}Il—wo{ZM-l-lEUXM(e )”}
T, e U 2M (rxtk1e/)
(Xj .
= lim Z wip(M)rg[k] e /@k (8.13)
k=—00
where we have set
k
Ik k| <2M
wi(M) = 2M +1 (8.14)
0 k| >2M

Since }wk(M yrx[k]e—jwk } < |rx[k] |, if the autocorrelation is absolutely
summable then the sum (8.13) converges uniformly to a continuous func-
tion of M. We can therefore move the limiting operation inside the sum;
now the key observation is that the weighting term w (M), considered as a
function of k parametrized by M, converges in the limit to the constant one
(Eq. (8.14)):

A}IILHOO wr(M)=1

We finally obtain:

o0

Px(el®)=Y " rxlk]e 1@k (8.15)
k=—00
This fundamental result means that the power spectral density of a WSS pro-
cess is the discrete-time Fourier transform of its autocorrelation. Similarly,
we can define the cross-power spectral density between two WSS processes
X[n] and Y[n] as

00

Pxy (e19)= " rxylk]e @k (8.16)

k=—00
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-39 26 ~13 0 13 26 39

Figure 8.1 Weighting function w (M) in (8.14) as a function of k.

8.4.3 White Noise

A WSS random process W[n] whose mean is zero and whose samples are
uncorrelated is called white noise. The autocorrelation of a white noise pro-
cess is therefore:

rwlnl=0%,6(n] 8.17)

where U%v is the variance (i.e. the expected power) of the process. The power
spectral density of a white noise process is simply:

Py(e!®)=0%, (8.18)
Please note:

¢ The probability distribution of a white noise process can be any, pro-
vided that it is always zero mean.

¢ Thejoint probability distribution of a white noise process need not be
iid.; if it is i.i.d., however, then the process is strict-sense stationary
and it is also called a strictly white process.

e White noise is an ergodic process, so that its pdf can be estimated
from a single realization.

8.5 Stochastic Signal Processing

In stochastic signal processing, we are considering the outcome of a filter-
ing operation which involves a random process; that is, given a linear time-
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invariant filter with impulse response h[n], we want to describe the output
signal as follows:

Y(n] = i hk] X[n — k]
k=—00

Note that Y[n] and X[n] denote random variables and are thus capitalized,
while h[n] is a deterministic impulse response and is therefore lowercase. In
the following, we will assume a stable LTI filter and a wide-sense stationary
(WSS) input process.

Time-Domain Analysis. The expected value of the filter’s output is
my(n =E[Y[n]] =E BlS D hlkIX[n - k]]
[k——oo J

hIKIE[X[n — k]]

hlk]my_x (8.19)

where m,, is the mean of X[n]. For a WSS input, obviously E[X[n]] = mx for
all n, and therefore the output has a constant expected value:

my=mx Y h[k]=mxH(e!)

k=—00

If the inputis WSS, it is fairly easy to show that the output is also WSS; in
other words, LTI filtering preserves wide-sense stationarity. The autocorrela-
tion of the output process Y[n] depends only on the time difference:

Ry[n,m]=ry[n—m]

and it can be shown that:

Z Zh[k n—i+kl

k=—00i=—00

or, more concisely,
ryln]=h[n]*h[—n]*rx[n] (8.20)
Similarly, the cross-correlation between input and output is

rxyln]= hln]*xrx[n] (8.21)
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Frequency-Domain Analysis. It is immediately obvious from (8.20)
that the power spectral density of the output process Y[n] is
Py(e/®) = |H(el )| Px(e/) (8.22)

where H(e/®) is, as usual, the frequency response of the filter. Similarly,
from (8.21) we obtain

Pyy(e/®)=H(e/®) Px(e/®) (8.23)

The above result is of particular interest in the practical problem of esti-
mating the characteristics of an unknown filter; this is a particular instance
of a spectral estimation problem. Indeed, if we inject white noise of known
variance o2 into an unknown LTI system ¢, equation (8.23) becomes:

Pxy(e’®)=H(e!?)c?

By numerically computing the cross-correlation between input and output,
we can therefore derive an estimation of the frequency response of the sys-
tem.

The total power of a stochastic process X[n] is the variance of the pro-
cess itself, ai = rx[0]; from the PSD, this can be obtained by the usual DTFT
inversion formula as

1 (" ,
ai:%f Px(e!®)dw (8.24)

which, for a filtered process, specializes to

1 (7 . .
oy =5 |H(e/ )| Pu(e’®)d w (8.25)
—TT

Example 8.1: Intuition behind power specira
The empirical average for a random variable X is the simple average:

1 N
mx=—>» X;
X N; i

where x1,x2,...,xy are N independent “trials” (think coin tossing). Simi-
larly, we can obtain an estimation for the variance as

N
L1 )
0% = D (Xi—mx)
i=1
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For an ergodic process, we can easily obtain a similar empirical estimate for
the covariance: we replace the N trials with N successive samples of the
process so that (assuming zero mean):

1 N
Px[n] = > X[ X[i~n]
i=1

The empirical autocorrelation has the form of an inner product between two
displaced copies of the same sequence. We saw in Section 5.2 that this rep-
resents a measure of self-similarity. In white processes the samples are so
independent that for even the smallest displacement (n = 1) the process is
totally “self-dissimilar”. Consider now a process with a lowpass power spec-
trum; this means that the autocorrelation varies slowly with the index and
we can deduce that the process possesses a long-range self-similarity, i.e. it
is smooth. Similarly, a highpass power spectrum implies a jumping auto-
correlation, i.e. a process whose self-similarity varies in time.

Example 8.2: Top secret filters

Stochastic processes are a fundamental tool in adaptive signal processing, a
more advanced type of signal processing in which the system changes over
time to better match the input in the pursuit of a given goal. A typical exam-
ple is audio coding, for instance, in which the signal is compressed by algo-
rithms which are modified as a function of the type of content. Another pro-
totypical application is denoising, in which we try to remove spurious noise
from a signal. Since these systems are adaptive, they are best described as a
function of a probabilistic model for the input.

In this book stochastic processes will be used mainly as a tool to study the
effects of quantization (hence the rather succinct treatment heretofore). We
can nonetheless try and “get a taste” of adaptive processing by considering
one of the fundamental results in the art of denoising, namely the Wiener
filter. This filter was developed by Norbert Wiener during World War II as
a tool to smooth out the tracked trajectories of enemy airplanes and aim
the antiaircraft guns at the most likely point the target would pass by next.
Because of this sensitive application, the theory behind the filter remained
classified information until well after the end of the war.

The problem, in its essence, is shown in Figure 8.2 and it begins with a signal
corrupted by additive noise:

X[n]=S8[n]+ Wln]

both the clean signal S[n] and the noise W{n] are assumed to be zero-mean
stationary processes; assume further that they are jointly stationary and in-
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Win]

X[n] $in]
sin] —— nim | ? Aln]

Figure 8.2 Denoising with a Wiener filter.

dependent. We want to design a filter k[n] to clean up the signal as much as
possible; if the filter’s output is

S[n] = h[n]*X[n]
then the error between the original and the estimation can be expressed as
Aln]=S[n]-S8[n]

It can be shown that the minimization of the expected square error corre-
sponds to an orthogonality condition between the error and the filter’s in-
put:®):

E[A[n]X[m]] =0 (8.26)

intuitively this means that anything contained in the error could not have
been predicted from the input, so the filter is doing the absolute best it
can. From the orthogonality condition we can derive the optimal filter;
from (8.26), we have

E[S[n] X[m]] =E[S[n] X[m]]
and, by using (8.21),
rsx[n] = hn]*rx[n] (8.27)

By invoking the independence of signal and noise and their zero mean we
have

rsx[n] =rs[n]

rx[n] =rs[n]+rw(n]

so that in the end
. Po(eiw
H(el®)= —— s(e’®) (8.28)
Ps(e/«)+ Py (el )

®1t should be E[A[n]X*[n]] = 0 but we assume X[n] real for simplicity.
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the frequency response attenuates the input where the noise is powerful
while the signal is not, and it leaves the input almost unchanged otherwise,
hence the data-dependence of its expression.

The optimal filter above was derived for an arbitrary infinite two-sided im-
pulse response. Wiener’s contribution was mainly concerned with the de-
sign of a causal response; the derivation is a little complicated and we will
not detail it here. A third, interesting design choice is imposing that the im-
pulse response be an N-tap FIR. In this case (8.27) becomes

N-1
D hlk]rxln— k] =rsln]
k=0

and by picking N successive values for n we can build the system of equa-
tions:

rx[0] rx[1] ... rxIN=1][ nio] |1 [ rs0]

rx[1] rx[0] ... Ix[N-=2] h[1] rs[1]

Tx[Z] Tx[l] rX[N—3] h[Z] = rs[Z]
_rx[N— 1] Tx[N—Z] rx[O] i _h[N— 1]_ _Ts[N— 1]_

where the Toeplitz nature of the matrix comes from the fact that rx[—n] =
rx[n]. This is a classical Yule-Walker system of equations and it is a funda-
mental staple of adaptive signal processing.

Further Reading

A good introductory reference on the subject is E. Parzen’s classic Stochas-
tic Processes (Society for Industrial Mathematics, 1999). For adaptive sig-
nal processing, see P. M. Clarkson’s Optimal and Adaptive Signal Process-
ing (CRC Press, 1993). For an introduction to probability, see the textbook:
D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability (Athena Sci-
entific, 2002). The classic book by A. Papoulis, Probability, Random Vari-
ables, and Stochastic Processes (McGraw Hill, 2002) still serves as a good,
engineering-oriented introduction. A more contemporary treatment of
stochastic processes can be found in P. Thiran’s excellent class notes for the
course “Processus Stochastiques pour les Communications”, given at the
Swiss Federal Institute of Technology (EPFL) in Lausanne.
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Exercise 8.1: Filtering a random process - I. Consider a zero-mean
white random process X[n] with autocorrelation function r[m] = o2 §[m].
The process is filtered with a 2-tap FIR filter whose impulse response is
h[0] = h[1] = 1. Compute the values of the autocorrelation for the output
random process Y[n] = X[n]* h[n] from n=—-3to n=3.

Exercise 8.2: Filtering a random process - Il. Consider a zero-mean
white random process X[n] with autocorrelation function rx[m] = o2 §[m].
The process is filtered with leaky integrator (H(z) = (1 — A)/(1 — Az~1)) pro-
ducing the signal Y[n] = X[n] * h[n]. Compute the values of the input-
output cross-correlation from n =—-3ton =3.

Exercise 8.3: Power spectral density. Consider the stochastic process
defined by

Y[n]=X[n]+ BX[n—-1]

where # € R and X[n] is a zero-mean wide-sense stationary process with
autocorrelation function given by

Rx[k]=c?dlFl
for |a| < 1.
(a) Compute the power spectral density Py(e/¢) of Y[n].

(b) For which values of 3 does Y[n] corresponds to a white noise?
Explain.

Exercise 8.4: Filtering a sequence of independent random vari-
ables. Let X[n] be a real signal modeled as the outcome of a sequence
of i.i.d. real random variables that are Gaussian, centered (zero mean), with
variance 0% = 3. We wish to process this sequence with the following filter:

h[1]=%, h[2]=i, h[3]=i, hin]=0 Vn#1,23

Moreover, at the output of the filter, we add a white Gaussian noise Z[n] with
unitary variance. The system is shown in the following diagram:
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Exercises

Z[n]

X[n]——| H(z) _,é_y[n]

Consider now an input signal of length N.

(a)

(b)
(9]

(d

(e)

Write a numerical routine (using Matlab or any other numerical pack-
age) to generate X[1],..., X[N].

Write a numerical routine to generate Z[1],...,Z[N].

Write a numerical routine that performs the filtering operation on
X[1],..., X[N].

Write a numerical routine to estimate the power spectral density of
Y[1],..., Y[N].

Compute the theoretical power spectral density of Y[1],..., Y[N] and
compare it with the estimated power spectral density obtained nu-
merically.
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Interpolation and Sampling

Signals (in signal processing) are nothing but mathematical models cap-
turing the essence of a flow of information. Discrete-time signals are the
model of choice in two archetypal processing situations: the first, which
encompasses the long-established tradition of observing physical phenom-
ena, captures the process of repeatedly measuring the value of a physical
quantity at successive instants in time for analysis purposes (precipitation
levels, stock values, etc.). The second, which is much more recent and dates
back to the first digital processors, is the ability to synthesize discrete-time
signals by means of iterative numerical algorithms (mathematical simula-
tions, computer music, etc.). Discrete-time is the mechanized playground
of digital machines.

Continuous-time signals, on the other hand, leverage on a view of the
world in which physical phenomena have, potentially, an infinitely small
granularity, in the sense that measurements can be arbitrarily dense. In this
continuous-time paradigm, real-world phenomena are modeled as func-
tions of a real variable; the definition of a signal over the real line allows
for infinitely small subdivisions of the function’s domain and, therefore, in-
finitely precise localization of its values. Whether philosophically validV) or
physically valid,® the continuous-time paradigm is an indispensable model
in the analysis of analog signal processing systems.

We will now study the mathematical description of the (porous) inter-
face between continuous-time and discrete time. The tools that we will in-
troduce, will allow us to cross this boundary, back and forth, with little or no
loss of information for the signals involved.

(DRemember Zeno’s paradoxes. ..

@The shortest unit of time at which the usual laws of gravitational physics still hold is
called Planck time and is estimated at 10~%3 seconds. Apparently, therefore, the universe
works in discrete-time. ..
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9.1 Preliminaries and Notation

Interpolation. Interpolation comes into play when discrete-time signals
need to be converted to continuous-time signals. The need arises at the in-
terface between the digital world and the analog world; as an example, con-
sider a discrete-time waveform synthesizer which is used to drive an analog
amplifier and loudspeaker. In this case, it is useful to express the input to the
amplifier as a function of a real variable, defined over the entire real line; this
is because the behavior of analog circuitry is best modeled by continuous-
time functions. We will see that at the core of the interpolation process is the
association of a physical time duration T; to the intervals between samples
of the discrete-time sequence. The fundamental questions concerning in-
terpolation involve the spectral properties of the interpolated function with
respect to those of the original sequence.

Sampling. Sampling is the method by which an underlying continuous-
time phenomenon is “reduced” to a discrete-time sequence. The simplest
sampling system just records the value of a physical variable at repeated
instants in time and associates the value to a point in a discrete-time se-
quence; in the following, we refer to this scheme as the “naive” sampling
operator. Other sampling methods exist (and we will see the most impor-
tant one) but, in all cases, a correspondence is established between time in-
stants in continuous time and points in the discrete-time sequence. In the
following, we only consider uniform sampling, in which the time instants
are uniformly spaced T seconds apart. T; is called the sampling period and
its inverse, F; is called the sampling frequency of a sampling system. The
fundamental question of sampling is whether any information is lost in the
sampling process. If the answer is in the negative (at least for a given class of
signals), this means that all the processing tools developed in the discrete-
time domain can be applied to continuous-time signals as well, after sam-

pling.

Table 9.1 Notation used in the Chapter.

Name | Description Units Relations
T Sampling period seconds Ts=1/F
F Sampling frequency hertz F,=1/T;

Qs Sampling frequency (angular) | rad/sec | Qs =2nF, =2n/T;

Qn Nyquist frequency (angular) rad/sec | Qy=Q;/2=n/T;
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Notation. In the rest of this Chapter we will encounter a series of vari-
ables which are all interrelated and whose different forms will be used in-
terchangeably according to convenience. They are summarized as a quick
reference in Table 9.1.

9.2 Continuous-Time Signals

Interpolation and sampling constitute the bridges between the discrete- and
continuous-time worlds. Before we proceed to the core of the matter, it is
useful to take a quick tour of the main properties of continuous-time sig-
nals, which we simply state here without formal proofs.

Continuous-time signals are modeled by complex functions of a real
variable ¢ which usually represents time (in seconds) but which can rep-
resent other physical coordinates of interest. For maximum generality, no
special requirement is imposed on functions modeling signals; just as in the
discrete-time case, the functions can be periodic or aperiodic, or they can
have a finite support (in the sense that they are nonzero over a finite inter-
val only). A common condition, on an aperiodic signal, is that its modeling
function be square integrable; this corresponds to the reasonable require-
ment that the signal have finite energy.

Inner Product and Convolution. We have already encountered some
examples of continuous-time signals in conjunction with Hilbert spaces;
in Section 3.2.2, for instance, we introduced the space of square integrable
functions over an interval and we will shortly introduce the space of ban-
dlimited signals. For inner product spaces, whose elements are functions
on the real line, we use the following inner product definition:

(f(2), g(1)) :f ff(gt)de 9.1)

The convolution of two real continuous-time signals is defined as usual from
the definition of the inner product; in particular:

(f*g)t)=(f(t—7) g(1)) 9.2)
=J ft—71)g(r)dr (9.3)

The convolution operator, in continuous time, is linear and time invariant,
as can be easily verified. Note that, in discrete-time, convolution represents
the operation of filtering a signal with a continuous-time LIT filter, whose
impulse response is of course a continuous-time function.
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Frequency-Domain Representation of Continuous-Time Signals.
The Fourier transform of a continuous-time signal x(#) and its inversion for-
mula are defined as®

X(jQ):J x(t)e /M dt (9.4)
x(t):if X(jQ) e/ dn (9.5)
21 )_ o

The convergence of the above integrals is assured for functions which sat-
isfy the so-called Dirichlet conditions. In particular, the FT is always well
defined for square integrable (finite energy), continuous-time signals. The
Fourier transform in continuous time is a linear operator; for a list of its
properties, which mirror those that we saw for the DTFT, we refer to the bib-
liography. It suffices here to recall the conservation of energy, also known as
Parseval’s theorem:

|x(0)|*dr= 1 IX()* ae
27

The FT representation can be formally extended to signals which are not
square summable by means of the Dirac delta notation as we saw in Sec-
tion 4.4.2. In particular we have

FT{e/®'} =275(Q— Q) (9.6)

from which the Fourier transforms of sine, cosine, and constant functions
can easily be derived. Please note that, in continuous-time, the FT of a com-
plex sinusoid is not a train of impulses but just a single impulse.

The Convolution Theorem. The convolution theorem for continuous-
time signal exactly mirrors the theorem in Section 5.4.2; it states that if
h(t) = (f * g)(¢) then the Fourier transforms of the three signals are related
by H(j2) = F(jQUG(j). In particular we can use the convolution theorem
to compute

o0

(f*g)t)= %f F(jOG(jQ)e/™ dQ 9.7)

—00

®The notation X(j2) mirrors the specialized notation that we used for the DTFT; in this
case, by writing X(j2) we indicate that the Fourier transform is just the (two-sided)
Laplace transform X(s) = fx(t) e~ dt computed on the imaginary axis.
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9.3 Bandlimited Signals

A signal whose Fourier transform is nonzero only, over a finite frequency
interval, is called bandlimited. In other words, the signal x(t) is bandlimited
if there exists a frequency Qy such that:@

X2 =0 for | > Qp

Such a signal will be called Qy-bandlimited and Qp is often called the
Nyquist frequency. It may be useful to mention that, symmetrically, a cont-
inuous-time signal which is nonzero, over a finite time interval only, is called
a time-limited signal (or finite-support signal). A fundamental theorem
states that a bandlimited signal cannot be time-limited, and vice versa.
While this can be proved formally and quite easily, here we simply give the
intuition behind the statement. The time-scaling property of the Fourier
transform states that:

FT{f(at)}= - F (1 9) ©.8)

a

so that the more “compact” in time a signal is, the wider its frequency sup-
port becomes.

The Sinc Function. Let us now consider a prototypical Qy-bandlimited
signal ¢(¢) whose Fourier transform is a real constant over the interval
[—Qn,Qn] and zero everywhere else. If we define the rect function as fol-
lows (see also Section 5.6):

1 [x[<1/2

rect(x) = {O x> 1/2

we can express the Fourier transform of the prototypical Qy-bandlimited
signal as

B(j2) = — t( o ) 9.9)
= —rect| — .
=0y 20y
where the leading factor is just a normalization term. The time-domain ex-
pression for the signal is easily obtained from the inverse Fourier transform
as

sinQpnt t
= = i _— .1
(1) i sinc ( Ts) (9.10)

@The use of > instead of > is a technicality which will be useful in conjunction with the
sampling theorem.
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where we have used Ty = 7/Qy and defined the sinc function as

sin(mx
sinc(x) = X
1 x=0

The sinc function is plotted in Figure 9.6. Note the following:
e The function is symmetric, sinc(x) = sinc(—x).

¢ The sinc function is zero for all integer values of its argument, except
in zero. This feature is called the interpolation property of the sinc, as
we will shortly see more in detail.

¢ The sinc function is square integrable (it has finite energy) but it is
not absolutely integrable (hence the discontinuity of its Fourier trans-
form).

e The decay is slow, asymptotic to 1/x.

e The scaled sinc function represents the impulse response of an ideal,
continuous-time lowpass filter with cutoff frequency Qy.

9.4 Interpolation

Interpolation is a procedure whereby we convert a discrete-time sequence
x[n] to a continuous-time function x(¢). Since this can be done in an arbi-
trary number of ways, we have to start by formulating some requirements
on the resulting signal. At the heart of the interpolating procedure, as we
have mentioned, is the association of a physical time duration T; to the in-
terval between the samples in the discrete-time sequence. An intuitive re-
quirement on the interpolated function is that its values at multiples of T
be equal to the corresponding points of the discrete-time sequence, i.e.

x(t) - =x[n]

The interpolation problem now reduces to “filling the gaps” between these
instants.
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9.4.1 Local Interpolation

The simplest interpolation schemes create a continuous-time function x(#)
from a discrete-time sequence x[n], by setting x(¢) to be equal to x[n] for
t = nT; and by setting x(¢) to be some linear combination of neighboring
sequence values when ¢ lies in between interpolation instants. In general,
the local interpolation schemes can be expressed by the following formula:

o0

x(t)= Z x[n]I(LnTs) (9.11)

n=-—00 T

where I(t) is called the interpolation function (for linear functions the no-
tation In(t) is used and the subscript N indicates how many discrete-time
samples, besides the current one, enter into the computation of the inter-
polated values for x(¢)). The interpolation function must satisfy the funda-
mental interpolation properties:

100)=1 ©.12)
I(k)=0 forkeZ\{0} '

where the second requirement implies that, no matter what the support of
I(t) is, its values should not affect other interpolation instants. By changing
the function I(#), we can change the type of interpolation and the properties
of the interpolated signal x(t).

Note that (9.11) can be interpreted either simply as a linear combina-
tion of shifted interpolation functions or, more interestingly, as a “mixed do-
main” convolution product, where we are convolving a discrete-time signal
x[n] with a continuous-time “impulse response” I(t) scaled in time by the
interpolation period T;.

Zero-Order Hold. The simplest approach for the interpolating function
is the piecewise-constant interpolation; here the continuous-time signal is
kept constant between discrete sample values, yielding

x(t)=x[n], for (n—%)Tsft<(n+%)Ts

and an example is shown in Figure 9.1; it is apparent that the resulting func-
tion is far from smooth since the interpolated function is discontinuous.
The interpolation function is simply:

Iy(t) =rect(t)

and the values of x(¢) depend only on the current discrete-time sample value.
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1o R \an sas I8 .

05 | - 1

—-05 | . R

Figure 9.1 Interpolation of a discrete-time sinusoid with the zero-order hold. Note
the discontinuities introduced by this simple scheme.

First-Order Hold. A linear interpolator (sometimes called a first-order
hold) simply connects the points corresponding to the samples with straight
lines. An example is shown in Figure 9.2; note that now x(¢) depends on two
consecutive discrete-time samples, across which a connecting straight line
is drawn. From the point of view of smoothness, this interpolator already
represents an improvement over the zero-order hold: indeed the interpo-
lated function is now continuous, although its first derivative is not. The
first-order hold can be expressed in the same notation as in (9.11) by defin-
ing the following triangular function:

1—¢] if|tl<1

L(t)=
! 0 otherwise

which is shown in Figure 9.3.® Itis immediately verifiable that I;(¢) satisfies
the interpolation properties (9.12).

-05 |

-1.0

Figure 9.2 Interpolation of a discrete-time sinusoid with the first-order hold. Note
that the first derivative is discontinuous.

® Note that I, (1) = (I * Io)(1).
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0 1 T 1 0 1 T T T 1
-1.5 -1.0 -05 O 05 10 15 -1.5 -1.0 -05 0 05 1.0 15

Figure 9.3 Interpolation functions for the zero-order (left) and first-order interpo-
lators (right).

Higher-Order Interpolators. The zero- and first-order interpolators are
widely used in practical circuits due to their extreme simplicity. Note that
the interpolating functions Iy(z) and I;(¢) are alsol knows as the B-spline
functions of order zero and one respectively. These schemes can be ex-
tended to higher order interpolation functions and, in general, In(¢)is a N-
th order polynomial in ¢. The advantage of the local interpolation schemes
is that, for small N, they can easily be implemented in practice as causal
interpolation schemes (locality is akin to FIR filtering); their disadvantage
is that, because of the locality, their N-th derivative is discontinuous. This
discontinuity represents a lack of smoothness in the interpolated function;
from a spectral point of view this corresponds to a high frequency energy
content, which is usually undesirable.

9.4.2 Polynomial Interpolation

The lack of smoothness of local interpolations is easily eliminated when we
need to interpolate just a finite number of discrete-time samples. In fact, in
this case the task becomes a classic polynomial interpolation problem for
which the optimal solution has been known for a long time under the name
of Lagrange interpolation. Note that a polynomial interpolating a finite set
of samples is a maximally smooth function in the sense that it is continuous,
together with all its derivatives.

Consider a length (2N +1) discrete-time signal x[n], withn =—N,...,N.
Associate to each sample an abscissa ¢, = nT;; we know from basic algebra
that there is one and only one polynomial P(¢) of degree 2N which passes
through all the 2N + 1 pairs (#,,x[n]) and this polynomial is the Lagrange
interpolator. The coefficients of the polynomial could be found by solving
the set of 2N + 1 equations:

{P(tn)=x[nl},—_n .~ (9.13)



244 Interpolation

but a simpler way to determine the expression for P(t) is to use the set
of 2N + 1 Lagrange polynomials of degree 2N':

()= l—[ ((tt — 1)
k;én "

N T —k
= I I % n=-N,...,.N (9.14)
=N 7
k#n

The polynomials L(,I,V)(t) for Ty =1 and N =2 (i.e. interpolation of 5 points)
are plotted in Figure 9.4. By using this notation, the global Lagrange inter-
polator for a given set of abscissa/ordinate pairs can now be written as a
simple linear combination of Lagrange polynomials:

N

P(t)="Y" x[nlL() (9.15)

n=—N
and it is easy to verify that this is the unique interpolating polynomial of
degree 2N in the sense of (9.13). Note that each of the L(,]lv)(t) satisfies the
interpolation properties (9.12) or, concisely (for T; = 1):

L(,ﬁv)(m) =0[n—m]
The interpolation formula, however, cannot be written in the form of (9.11)

since the Lagrange polynomials are not simply shifts of a single prototype
function. The continuous time signal x(¢) = P(t) is now a global interpo-

1.0 | R

0.5 | R

-0.5 | R

T T T T T

-2 -1 0 1 2

Figure 9.4 Lagrange interpolation polynomials Pt)forT=1and n=-2,...,2.
Note that L(,IZV)(t) is zero for ¢ integer except for t = n, where itis 1.
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lating function for the finite-length discrete-time signal x[n], in the sense
that it depends on all samples in the signal; as a consequence, x(¢) is maxi-
mally smooth (x(¢) € C*). An example of Lagrange interpolation for N =2
is plotted in Figure 9.5.

Figure 9.5 Maximally smooth Lagrange interpolation of a length-5 signal.

9.4.3 Sinc Interpolation

The beauty of local interpolation schemes lies in the fact that the inter-
polated function is simply a linear combination of shifted versions of the
same prototype interpolation function I(¢); unfortunately, this has the dis-
advantage of creating a continuous-time function which lacks smoothness.
Polynomial interpolation, on the other hand, is perfectly smooth but it only
works in the finite-length case and it requires different interpolation func-
tions with different signal lengths. Yet, both approaches can come together
in a convenient mathematical way and we are now ready to introduce the
maximally smooth interpolation scheme for infinite discrete-time signals.

Let us take the expression for the Lagrange polynomial of degree N in
(9.14) and consider its limit for N going to infinity. We have

l—["o t/T,—k l—[oo t/Ty—n+m
N—o00

n—k L m
k=—oc0 m=—00
k#n m#0
o0
t/Ts—n
= I I (1+/5—)
m=—oo m
m#0

10-(57)
= 1—| — (9.16)
m=1 m



246 Interpolation

Here, we have used the change of variable m = n — k. We can now invoke
Euler’s infinite product expansion for the sine function

sin(ntt) = (7'57)1_[ (1 — T—z)
k=1 k

(whose derivation is in the appendix) to finally obtain
t—nn)

N

lim L™M(1) :sinc( 9.17)
N—00

The convergence of the Lagrange polynomial L(ON) () to the sinc function is
illustrated in Figure 9.6. Note that, now, as the number of points becomes
infinite, the Lagrange polynomials converge to shifts of the same prototype
function, i.e. the sinc; therefore, the interpolation formula can be expressed
as in (9.11) with I(¢) = sinc(t); indeed, if we consider an infinite sequence
x[n] and apply the Lagrange interpolation formula (9.15), we obtain:

x(t)= i x[n]sinc(t_TnTs) (9.18)

n=—00 S

1.0 b

0.5 | R

0‘_/\/\/\/\/\ /\/\/\/\A4~
~VVVVV vvvvv*—

-10 -5 0 5 10

Figure 9.6 A portion of the sinc function and its Lagrange approximation L(Owo)(t)
(light gray).

Spectral Properties of the Sinc Interpolation. The sinc interpolation
of a discrete-time sequence gives rise to a strictly bandlimited continuous-
time function. If the DTFT X(e/®) of the discrete-time sequence exists, the
spectrum of the interpolated function X(j2) can be obtained as follows:

X(j9) = f S

o0 N=—00

t—nT, .
= Z x[n]f sinc( Tn s)e_fmdt
—00

n=—00 s

t—nT ;
x[n]sinc (75) e Mt
T;
o0
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Now we use (9.9) to obtain the Fourier Transform of the scaled and shifted
sinc:

o0

XY= Z x[n] (%) rect (%) o inTQ

n=—00 N

and use the fact that, as usual, T; = 7/Qpy:

T Q > .
Q)= — - —jn(/Qn)n
X({Go) (QN)rect(ZQN) n:E_oox[n] e

T ,
Q—X(efm/ﬂ"’) for |Q] < Qp
=<4 Iy

0 otherwise

In other words, the continuous-time spectrum is just a scaled and stretched
version of the DTFT of the discrete-time sequence between —m and 7. The
duration of the interpolation interval T is inversely proportional to the re-
sulting bandwidth of the interpolated signal. Intuitively, a slow interpola-
tion (T large) results in a spectrum concentrated around the low frequen-
cies; conversely, a fast interpolation (7; small) results in a spread-out spec-
trum (more high frequencies are present).©®

9.5 The Sampling Theorem

We have seen in the previous Section that the “natural” polynomial interpo-
lation scheme leads to the so-called sinc interpolation for infinite discrete
time sequences. Another way to look at the previous result is that any square
summable discrete-time signal can be interpolated into a continuous-time
signal which is smooth in time and strictly bandlimited in frequency. This
suggests that the class of bandlimited functions must play a special role in
bridging the gap between discrete and continuous time and this deserves
further investigation. In particular, since any discrete-time signal can be in-
terpolated exactly into a bandlimited function, we now ask ourselves whether
the converse is true: can any bandlimited signal be transformed into a discrete-
time signal with no loss of information?

©®To find a simple everyday (yesterday’s?) analogy, think of a 45 rpm vinyl record played
at either 33 rpm (slow interpolation) or at 78 rpm (fast interpolation) and remember the
acoustic effect on the sounds.
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The Space of Bandlimited Signals. The class of Qy-bandlimited func-
tions of finite energy forms a Hilbert space, with the inner product defined
in (9.1). An orthogonal basis for the space of Qy-bandlimited functions can
easily be obtained from the prototypical bandlimited function, the sinc; in-
deed, consider the family:

nez (9.19)

t—nT;
go(”)(t)=sinc( " ),

N

where, once again, T; = 7w/Qy. Note that we have ¢(")(¢) = pO(t — nT;)
so that each basis function is simply a translated version of the prototype
basis function ¢©). Orthogonality can easily be proved as follows: first of all,
because of the symmetry of the sinc function and the time-invariance of the
convolution, we can write

(™(0), 0'"™(0) = (¢ = nTy), 't = mTy))
=(p0n T = 1), ¢ (mT; — 1)

= (V%) ((n—m)Ty)

We can now apply the convolution theorem and (9.9) to obtain:

1 [ Q1) .
(so(")(t),so(”’)(f»:EJ (Qire“(sz_)) et an
ENRRYIY

N
Qn
- = eI =m0
20y .
T
—=T, ifn=m
={Qn
0 ifn#m

so that { (")(1)}, ., is orthogonal with normalization factor Qy /7 (or, equiv-
alently, 1/T;).

In order to show that the space of Q-bandlimited functions is indeed
a Hilbert space, we should also prove that the space is complete. This is a
more delicate notion to show” and here it will simply be assumed.

(@ Completeness of the sinc basis can be proven as a consequence of the completeness of
the Fourier series in the continuous-time domain.
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Sampling as a Basis Expansion. Now that we have an orthogonal ba-
sis, we can compute coefficients in the basis expansion of an arbitrary Q-
bandlimited function x(¢). We have

(9"(1),x(1)) = (Ut — nT;), x(1)) (9.20)
= (0% x)(nTy) (9.21)
_1 T rect (i) X(jQ) e/ g0 9.22)
27 o Qn 20N

mw 1 o
= — X(jQ) e/ da (9.23)

Qn 27 —Qn
=T x(nTy) (9.24)

In the derivation, firstly we have rewritten the inner product as a convolu-
tion operation, after which we have applied the convolution theorem, and
recognized the penultimate line as simply the inverse FT of X(j2) calculated
in t = nT;. We therefore have the remarkable result that the n-th basis ex-
pansion coefficient is proportional to the sampled value of x(t) att = nT;.
For this reason, the sinc basis expansion is also called sinc sampling.

Reconstruction of x(#) from its projections can now be achieved via the
orthonormal basis reconstruction formula (3.40); since the sinc basis is just
orthogonal, rather than orthonormal, (3.40) needs to take into account the
normalization factor and we have

8}

x(D=7 3 (g0,x(0) p"0)

S n=—00

> . (t—nT;
= Z x(nTs)smc( T ) (9.25)

N

n=—00

which corresponds to the interpolation formula (9.18).

The Sampling: Theorem. If x(t) is a Qy-bandlimited continuous-time
signal, a sufficient representation of x(t) is given by the discrete-time signal
x[n] = x(nT;), with T; = n/Qy. The continuous time signal x(t) can be ex-
actly reconstructed from the discrete-time signal x[n] as

x(t)= i x[n]sinc (t —TnTs)

n=—00 S

The proof of the theorem is inherent to the properties of the Hilbert
space of bandlimited functions, and is trivial once having proved the ex-
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istence of an orthogonal basis. Now, call {4 the largest nonzero frequency
of a bandlimited signal.® Such a signal is obviously 2y -bandlimited for all
Qn > Qmax. Therefore, a bandlimited signal x(#) is uniquely represented by
all sequences x[n] =x(nT) for which T < Ty = 1/Qmax; Ts is the largest sam-
pling period which guarantees perfect reconstruction (i.e. we cannot take
fewer than 1/T; samples per second to perfectly capture the signal; we will
see in the next Section what happens if we do). Another way to state the
above point is to say that the minimum sampling frequency 2 for perfect
reconstruction is exactly twice the signal’s maximum frequency, or that the
Nyquist frequency must coincide to the highest frequency of the bandlim-
ited signal; the sampling frequency Q must therefore satisfy the following
relationship:

Q>0 =20max
or, in hertz,
F > F; =2Fnax
9.6 Aliasing

The “naive” notion of sampling, as we have seen, is associated to the
very practical idea of measuring the instantaneous value of a continuous-
time signal at uniformly spaced instants in time. For bandlimited signals,
we have seen that this is actually equivalent to an orthogonal decomposi-
tion in the space of bandlimited functions, which guarantees that the set of
samples x(n T;) uniquely determines the signal and allows its perfect recon-
struction. We now want to address the following question: what happens if
we simply sample an arbitrary continuous time signal in the “naive” sense
(i.e. in the sense of simply taking x[n] = x(nT;)) and what can we recon-
struct from the set of samples thus obtained?

9.6.1 Non-Bandlimited Signals

Given a sampling period of T; seconds, the sampling theorem ensures that
there is no loss of information by sampling the class of Qx-bandlimited sig-
nals, where as usual Qy = 7t/ T;. If a signal x(#) is not Qy-bandlimited (i.e.
its spectrum is nonzero at least somewhere outside of [—Qy,Qn]) then the

®For real signals, whose spectrum is symmetric, X(jQ2) = 0 for |Q] > Qmax S0 that Qmay is
the largest positive nonzero frequency. For complex signals, Q. is the largest nonzero
frequency in magnitude.
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approximation properties of orthogonal bases state that its best approxima-
tion in terms of uniform samples T; seconds apart is given by the samples of
its projection over the space of Qy -bandlimited signals (Sect. 3.3.2). This is
easily seen in (9.23), where the projection is easily recognizable as an ideal
lowpass filtering operation on x(¢) (with gain T;) which truncates its spec-
trum outside of the [—Qp, Q] interval.

Sampling as the result of a sinc basis expansion automatically includes
this lowpass filtering operation; for a Qx-bandlimited signal, obviously, the
filtering is just a scaling by T;. For an arbitrary signal, however, we can
now decompose the sinc sampling as in Figure 9.7, where the first block is
a continuous-time lowpass filter with cutoff frequency Qy and gain T; =
7/Qn. The discrete time sequence x[n] thus obtained is the best discrete-
time approximation of the original signal when the sampling is uniform.

x(t) ——] J:L xurlt) —)(— I

Figure 9.7 Bandlimited sampling (sinc basis expansion) as a combination of low-
pass filtering (in the continuous-time domain) and sampling; x;p(t) is the projec-
tion of x(¢) over the space of y-bandlimited functions.

9.6.2 Aliasing: Intuition

Now let us go back to the naive sampling scheme in which simply x[n] =
x(nT;), with F; = 1/T;, the sampling frequency of the system; what is the
error we incur if x(#) is not bandlimited or if the sampling frequency is less
than twice the maximum frequency? We can develop the intuition by start-
ing with the simple case of a single sinusoid before moving on to a formal
demonstration of the aliasing phenomenon.

Sampling of Sinusoids. Consider a simple continuous-time signal® such
as x(t) = e/2mfot and its sampled version x[n] = e/27(fo/E)n = gjwon with
fo

=2n— 9.26
wo R ( )

Clearly, since x(t) contains only one frequency, it is 2-bandlimited for all
Q > 27| fol. If the frequency of the sinusoid satisfies |fy| < Fs/2 = Fy, then

@1n the following examples we will express the frequencies of sinusoids in hertz, both out
of practicality and to give an example of a different form of notation.
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wo € (—m,7) and the frequency of the original sinusoid can be univocally
determined from the sampled signal. Now assume that f, = Fy = F;/2; we
have

x[n]=e/™ =7/

In other words, we encounter a first ambiguity with respect to the direction
of rotation of the complex exponential: from the sampled signal we cannot
determine whether the original frequency was fy = Fy or fy = —Fy. If we
increase the frequency further, say fy = (14 a)Fy, we have

x[n] — ej(1+a)7m — e—jann

Now the ambiguity is both on the direction and on the frequency value: if
we try to infer the original frequency from the sampled sinusoid from (9.26),
we cannot discriminate between fy = (14 a)Fy or fy = —aFy. Matters get
even worse if fo > F;. Suppose we can write fy = F; + fp with f}, < F;/2; we
have

x[n] — ej(27rFsTs+27rbeS)n — ej(27r+wb)n — ejwbn
so that the sinusoid is completely indistinguishable from a sinusoid of fre-
quency fp sampled at F;; the fact that two continuous-time frequencies are
mapped to the same discrete-time frequency is called aliasing. An example
of aliasing is depicted in Figure 9.8.

In general, because of the 27-periodicity of the discrete-time complex
exponential, we can always write

wp=02nfoT)+2kn

1.0 ¢

-0.5 | 1

-1.0 | b
T T

0 1 2 3

Figure 9.8 Example of aliasing: a sinusoid at 8400 Hz, x(t) = cos(27 - 8400¢) (solid
line) is sampled at F; = 8000 Hz. The sampled values (dots) are indistinguishable
from those of at 400 Hz sinusoid sampled at F;.
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and choose k €Z so that wy, falls in the [—7, 7] interval. Seen the other way,
all continuous-time frequencies of the form

f=fp+kF

with fj, < Fy are aliased to the same discrete-time frequency wp.
Consider now the signal y(t) = Ae/2m/vt + Bei2mv+FE) with f;, < Fy. If
we sample this signal with sampling frequency F; we obtain:

x[n] :Ae]zn(fb/Fs)n + B ejzn(fb/EvJ"l)nTs
:Aejwhn+Bejwhnej27rn

=(A+ B)e/“n"

In other words, two continuous-time exponentials which are F; Hz apart,
give rise to a single discrete-time complex exponential, whose amplitude is
equal to the sum of the amplitudes of both the original sinusoids.

Energy Folding of the Fourier Transform. To understand what hap-
pens to a general signal, consider the interpretation of the Fourier transform
as a bank of (infinitely many) complex oscillators initialized with phase and
amplitude, each contributing to the energy content of the signal at their re-
spective frequency. Since, in the sampled version, any two frequencies F;
apart are indistinguishable, their contributions to the discrete-time Fourier
transform of the sampled signal add up. This aliasing can be represented
as a spectral superposition: the continuous-time spectrum above Fy is cut,
shifted back to —Fy, summed over [—Fy, Fy], and the process is repeated
again and again; the same applies for the spectrum below —Fy. This pro-
cess is nothing but the familiar periodization of a signal:

D X(j2nf +j2knF)

k=—00

as we will prove formally in the next Section.

9.6.3 Aliasing: Proof

In the following, we consider the relationship between the DTFT of a sam-
pled signal x[n] and the FT of the originating continuous-time signal x.(¢).
For clarity, we add the subscript “c” to all continuous-time quantities so
that, for instance, we write x[n] = x.(n T;). Moreover, we use the usual tilde
notation for periodic functions.
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Consider X(e/), the DTFT of the sampled sequence (with, as usual, T; =
(1/F)=(m/Qn)). The inversion formula states:

Y
1 . .
x[n]:—f X(e'?)e!“" dw 9.27)
2n
-7
We will use this result later. We can also arrive at an expression for x[n] from
X:(j), the Fourier transform of the continuous-time function x.(¢); in-
deed, by writing the formula for the inverse continuous-time Fourier trans-
form computed in n T; we can state that:
o0
1 . iQnT;
x[n]l=x:(nT;)=— X (j) el s dQ (9.28)
21 J_
The idea is to split the integration interval in the above expression as the
sum of non-overlapping intervals whose width is equal to the sampling band-
width Qg = 2Qy; this stems from the realization that, in the inversion pro-
cess, all frequencies €); apart give indistinguishable contributions to the
discrete-time spectrum. We have

] & (2k+1)N .
x[n]=— ZJ X(jO) el dn
(

27T k=—00v (2k—1)Qn

which, by exploiting the Q-periodicity of e/2"T (i.e. e/ @HkInTs = gjQnly)
becomes

1 00 Qn .
x[n)= o Z J_QNXC(jQ—ijS)eJQ"TS an (9.29)

k=—00

Now we interchange the order of integration and summation (this can be
done under fairly broad conditions for x.(t)):

Qn 00
x[n]zif { > Xc(jQ—ijS)}em"Ts o 9.30)

2n —On \k=—o00

and if we define the periodized function:
o0
X(j)= D Xel(j2—jkRy)
k=—00
we can write

1 [
x[n]=—f X (j) e/ dQ (9.31)
2n .
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after which, finally, we operate the change of variable 8 = QT;:

1 (1. (.0) .
— —X.|ji= jon 32
x[n] zﬂf_nTs (]Ts)e do 9.32)

It is immediately verifiable that X, (j(0/T;)) is now 27-periodic in 6. If
we now compare (9.32) to (9.27) we can easily see that (9.32) is nothing but
the DTFT inversion formula for the 27-periodic function (1/T;)X(j0/Ts);
since the inversion formulas (9.32) and (9.27) yield the same result (namely,
x[n]) we can conclude that:

o I w21k
X(el®)= T k;ooxc (] 7 Ts) (9.33)
which is the relationship between the Fourier transform of a continuous-
time function and the DTFT of its sampled version, with T; being the sam-
pling period. The above result is a particular version of a more general result
in Fourier theory called the Poisson sum formula. In particular, when x.(t) is
Qn-bandlimited, the copies in the periodized spectrum do not overlap and
the (periodic) discrete-time spectrum between —7 and « is simply

X(el @)= %XC (]%) 9.34)

9.6.4 Aliasing: Examples

Figures 9.9 to 9.12 illustrate several examples of the relationship between
the continuous-time spectrum and the discrete-time spectrum. For all fig-
ures, the top panel shows the continuous-time spectrum X(j(2), with labels
indicating the Nyquist frequency and the sampling frequency. The middle
panel shows the periodized function X.(j€); the single copies are plotted
with a dashed line (they are not be visible if there is no overlap) and their
sum is plotted in gray, with the main period highlighted in black. Finally,
the last panel shows the DTFT after sampling over the [—7, 7t] interval.

Oversampling. Figure 9.9 shows the result of sampling a bandlimited sig-
nal with a sampling frequency in excess of the minimum (in this case, Q =
3Qmax/2); in this case we say that the signal has been oversampled. The re-
sult is that, in the periodized spectrum, the copies do not overlap and the
discrete-time spectrum is just a scaled version of the original spectrum (with
even a narrower support than the full [-7, 7] range because of the oversam-
pling; in this case wmax = 27/3).
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Xe(j9)

(=)

—2Q —Qy —On 0 Qn Qs 280
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T
1

X(el®)

(=)

1 T T T 1

-7 -2n/3 -1/3 0 /3 21/3 T

Figure 9.9 Sampling of a bandlimited signal with Qy > Q¢ (in this case Qmax =
2Qy/3). Original continuous-time spectrum X, (j2) (top panel); periodized spec-
trum X.(j©) (middle panel, with repetitions in gray); discrete-time spectrum
X(eJ®) over the [—, 7] interval (bottom panel).

Critical Sampling. Figure 9.10 shows the result of sampling a bandlimited
signal with a sampling frequency exactly equal to twice the maximum fre-
quency; in this case we say that the signal has been critically sampled. In the
periodized spectrum, again the copies do not overlap and the discrete-time
spectrum is a scaled version of the original spectrum occupying the whole
[, 7] range.
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Figure 9.10 Sampling of a bandlimited signal with Q. = Q.

Undersampling (Aliasing). Figure 9.11 shows the result of sampling a
bandlimited signal with a sampling frequency less than twice the maximum
frequency. It this case, copies do overlap in the periodized spectrum and
the resulting discrete-time spectrum is an aliased version of the original; the
original spectrum cannot be reconstructed from the sampled signal. Note,
in particular, that the original lowpass shape is now a highpass shape in the
sampled domain (energy at w = 7 is larger than at w = 0).
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Figure 9.11 Sampling of a bandlimited signal with Qp,x > Qp (in this case Qmax =
3Qxn/2). Original continuous-time spectrum X,.(j2) (top panel); periodized spec-
trum X.(jQ) (middle panel, with overlapping repetitions dashed gray); aliased
discrete-time spectrum (bottom panel).

Sampling of Non-Bandlimited Signals. Finally, Figure 9.12 shows the
result of sampling a non-bandlimited signal with a sampling frequency
which is chosen as a tradeoff between alias and number of samples per sec-
ond. The idea is to disregard the low-energy “tails” of the original spectrum
so that their alias does not exceedingly corrupt the discrete-time spectrum.
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In the periodized spectrum, the copies do overlap and the resulting discrete-
time spectrum is an aliased version of the original, which is similar to the
original; however, the original spectrum cannot be reconstructed from the
sampled signal. In a practical sampling scenario, the correct design choice
would have been to lowpass filter (in the continuous-time domain) the orig-
inal signal so as to eliminate the spectral tails beyond =+ Q.

1 - .
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Naw
=
0 ; T T T T T T
—20, 0, -On 0 O 0, 20,
1 - .
—
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0 T (e T f L B i
—20, —0, -0y 0 an Q, 20,
T
1 - .
—
3
~
2
=
0 T T T T T
-7 -21/3 -1/3 0 /3 21/3 T

Figure 9.12 Sampling of a non-bandlimited signal.
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9.7 Discrete-Time Processing of Analog Signals

Sampling and interpolation (or, more precisely, the A/D and D/A conver-
sions strategies which we will see in the next Chapter) represent the entry
and exit points of the powerful processing paradigm for which discrete-time
signal processing is “famous”. Samplers and interpolators are the only inter-
faces with the physical world, while all the processing and the analysis are
performed in the abstract, dimensionless and timeless world of a general
purpose microprocessor.

The generic setup of a real-world processing device is as shown in Fig-
ure 9.13. In most cases, the sampler’s and the interpolator’s frequencies are
the same, and they are chosen as a function of the bandwidth of the class
of signals for which the device is conceived; let us assume that the input is
bandlimited to Qy = /T (or to F;/2, if we reason in hertz). For the case
in which the processing block is a linear filter H(z), the overall processing
chain implements an analog transfer function; from the relations:

: 1 w
Jwy— i
X(el®) T X, (] Tg) (9.35)
Y(e/®)= H(e!®)X(e!®) (9.36)
Y.(jO) = T, Y (/™) 9.37)
we have
Y(jQ)= H(e ™) X (j) (9.38)

So, for instance, if H(z) is a lowpass filter with cutoff frequency /3, the pro-
cessing chain in Figure 9.13 implements the transfer function of an analog
lowpass filter with cutoff frequency Qx/3 (or, in hertz, F;/6).

x[n] yIn]
x(t) - H(z) (1) F——y(1)

1/T; 1/T;

Figure 9.13 Discrete-time processing of analog signals.

9.7.1 A Digital Differentiator

In Section 2.1.4 we introduced an approximation to the differentiator oper-
ator in discrete time as the first- order difference between neighboring sam-
ples. The processing paradigm that we have just introduced, will now allow
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us to find the exact differentiator for a discrete-time signal. We start from a
classical result of Fourier theory stating that, under broad conditions, if x()

is a differentiable function and if x(t) LR X(j2) thenitis
¥/(1) <= JOX(Q)

This is actually easy to prove by applying integration by part to the expres-
sion for the Fourier transform of x’(¢). Now, it is immediately verifiable that

if we set H(e/®) = jw/ T in (9.38) we obtain the followings: the system in Fig-
ure 9.13 exactly implements the transfer function of a continuous-time dif-
ferentiator or, in other words, we can safely state that:

ylnl=x"[n]

where the derivative is clearly interpreted as the derivative of the underlying
continuous-time signal. From the frequency response of the digital differ-
entiator, it is easy to determine its impulse response via an inverse DTFT
(and an integration by parts); we have

0 forn=0

h{n]=+ (-1)»
(=1 otherwise

From its infinite, two-sided impulse response, it is readily seen that the digi-
tal differentiator is an ideal filter; good FIR approximations can be obtained
using the Parks-McClellan algorithm.

1.0 1

0.5

-05 |

Figure 9.14 Impulse response (portion) of the ideal discrete-time differentiator.

9.7.2 Fractional Delays

We know that a discrete-time delay of D samples is a linear system with
transfer function Hy(z) = z~P (or, alternatively, Hy(e/®) = e J®D), If D is
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notan integer, the transfer function is still formally valid and we have stated
that it implements a so-called fractional delay, i.e. a delay which lies “in be-
tween” two integer delays. The processing paradigm above will allow us to
understand exactly the inner workings of a fractional delay. Assume D € R
and 0 < D < 1; for all other values of D we can always split the delay into an
integer part (which poses no problems) and a fractional part between zero
and one. If we use H(z) =z"L in (9.38) we have

Y. (jQ)=e7PEX (jQ)
which in the time domain becomes
ye(t)=x.(t — DT;)

that is, the output continuous-time signal is just the input continuous-time
signal delayed by a fraction D of the sampling interval T;. In discrete time
therefore we have

y[nl=xc(nTs— DT)

so that the action of a fractional delay is “resampling” the signal at any given
point between the original sampling instants. We can appreciate this by also
considering the impulse response; it is obvious that:

hgq[n]=sinc(n — D)
Now, if we write out the convolution sum explicitly, we have

y[nl=x[n]*hg[n]

= Z x[k]sinc(n — D — k)
k=—00

= Z x[k]sinc((nT_DT)_kT)
k=—00 r

which is valid for any T and which clearly shows the convolution sum as the
interpolation formula (9.18) sampled at the instants t =nT — DT.

Example 9.1: Another way to aliasing
Consider a real function f(¢) for which the Fourier transform is well defined:

F(jQ) =J f(t)ye M at (9.39)
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Suppose that we only possess a sampled version of f(z), that is, we only
know the numeric value of f(z) at times multiples of a sampling interval
T; and that we want to obtain an approximation of the Fourier transform
above.
Assume we do not know about the DTFT; an intuitive (and standard) place
to start is to write out the Fourier integral as a Riemann sum:
o0
FQ)~ F(jQ)= Y Tf(nT;)e e (9.40)
n=-00

indeed, this expression only uses the known sampled values of f(¢). In or-
der to understand whether (9.40) is a good approximation consider the pe-
riodization of F(jQ):

. > 27

E(jQ) n:Z—ooF(] (Q+ T n)) (9.41)
in which F(jQ) is repeated with overlap with period 27t/ T;. We will show
that:

F(jQ)=F(jQ)
that is, the Riemann approximation is equivalent to a periodization of the
original Fourier transform; in mathematics this is known as a particular
form of the Poisson sum formula.

To see this, consider the periodic nature of F(jQ) and remember that any
periodic function f(x) of period L admits a Fourier series expansion:

o0
fi=> AyelTr 9.42)
n=—00
where
L2
1 i
An=z f(ye 7T dr (9.43)
—1/2

Here’s the trick: we regard F(jQ) as an anonymous periodic complex func-
tion and we compute its Fourier series expansion coefficients. If we replace
Lby2n/T; in (9.43) we can write

=7/ Ty
/Ty 400
27 .
== § F(j(Q+—k))e—f"Ts“dQ
27 T;
-1/ Ts k=—o0

T 7/ Ty

An:—sf F(je " dq
21
T
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By inverting integral and summation, which we can do if the Fourier trans-
form (9.40) is well defined:

T 7’:/7—:9 2 .

An=—5§ J F(j (Q+—ﬂk))e‘f”mdﬂ

T,
k _T[/Tv $

and, with the change of variable ¥ =Q+ 27/ T;)k,

T 2k+1)r/ Ty o,
k JQk-1)r/T;

where ¢/ "% = 1. The integrals in the sum are on contiguous and non-
overlapping intervals, therefore:

1 +00

A, = ]}%J‘ F(]Q/) e—]nTsQ ao’
—00
=T f(=nT;)

so that by replacing the values for all the A, in (9.42) we obtain F(jQ) =
F(j).

What we just found is another derivation of the aliasing formula. Intuitively,
there is a duality between the time domain and the frequency domain in
that a discretization of the time domain leads to a periodization of the fre-
quency domain; similarly, a discretization of the frequency domain leads
to a periodization of the time domain (think of the DFS and see also Exer-
cise 9.9).

Example 9.2: Time-limited vs. bandlimited functions

The trick of periodizing a function and then computing its Fourier series ex-
pansion comes very handy in proving that a function cannot be bandlimited
and have a finite support at the same time. The proofis by contradiction and
goes as follows: assume f(¢) has finite support

f()=0, for |t| > Tp

assume that f(¢) has a well-defined Fourier transform:

To

F(jQ):J f(e 7 Mdt= f(e 7 Mat

-To

and that it is also bandlimited so that:

F(Gj)=o0, for || > Qg
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Now consider the periodized version:

o0
fy= " fe—2ns)
n=—00
since f(t) =0 for |t| > Ty, if we choose S > Tj the copies in the sum do not
overlap, as shown in Figure 9.15. If we compute the Fourier series expan-
sion (9.43) for the 2S-periodic f (t) we have

S
f)e 175t gy

n

25 )
To

= i f(t)e—j(ﬁ/S)nt dt
28 1

(%)

Since we assumed that f(¢) is bandlimited, it is

QS
A, =0, for |n| > {LJ =Ny
T

and therefore we can write the reconstruction formula (9.42):

No
f= 37 ayeltsiom

n=—Ny

Now consider the complex-valued polynomial of degree 2Ny + 1

No
P(z)= Z A,z"

n=—Nyp

obviously P(e/(7/9)t) = f(¢) but we also know that f{(t) is identically zero
over the [Ty, 2S5 — Tp] interval (Fig. 9.15). Now, a finite-degree polynomial
P(z) has only a finite number of roots and therefore it cannot be identi-
cally zero over an interval unless it is zero everywhere (see also Example 6.2).
Hence, either f(t) = 0 everywhere or f(¢) cannot be both bandlimited and
time-limited.

fry=o0

AN aNauTal

-2S

Figure 9.15 Finite support function f(t) (black) and non-overlapping periodiza-
tion (gray).
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Appendix

The Sinc Product Expansion Formula
The goal is to prove the product expansion

sin(nt) t2
——= l_[ (1 - ?) (9.44)

n=1

We present two proofs; the first was proposed by Euler in 1748 and, while
it certainly lacks rigor by modern standards, it has the irresistible charm of
elegance and simplicity in that it relies only on basic algebra. The second
proof is more rigorous, and is based on the theory of Fourier series for pe-
riodic functions; relying on Fourier theory, however, hides most of the con-
vergence issues.

Euler's Proof. Consider the N roots of unity for N odd. They comprise
z =1plus N—1 complex conjugate roots of the form z = e*/vk fork =1,...,
(N—1)/2 and wy =27/ N. If we group the complex conjugate roots pairwise
we can factor the polynomial zV —1 as
(N-1)/2
N_1=(z-1) l_[ (22 =2z cos(wyk)+1)
k=1
The above expression can immediately be generalized to
(N-1)/2
ZN—aVN=(z—a) l_[ (2% —2azcos(wyk)+a?)
k=1
Now replace z and a in the above formula by z =(14+x/N)and a = (1-x/N);
we obtain the following:

(303"

4y N=D/2
X (1 — cos(CONk)+ (1 + Cos(ka)))
N =1
(N-1)/2 2
. x? 1+cos(wnk)
_4x 1- )\ N2 T costonk)
v [ (1—cos(wy ))( +N2 1— cos(cozvk))

=Ax

(N— 1)/2 x2(1+ cos(wnk))
( N2(1—cos(a)Nk)))

> TL T

where A is just the finite product (4/N) ]_[(N b7z (1 —cos(wnk)). The value
A is also the coefficient for the degree-one term x in the right-hand side and
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it can be easily seen from the expansion of the left hand-side that A =2 for
all N; actually, this is an application of Pascal’s triangle and it was proven by
Pascal in the general case in 1654. As N grows larger we have that:

£ \N
(I:I:—) ~ etF
N

and at the same time, if N is large, then wy = 27/N is small and, for small

values of the angle, the cosine can be approximated as

2

w

cos(w)~1——
(@)~1-7

so that the denominator in the general product term can, in turn, be approx-
imated as

27 4k2 2
N?(1—cos|[ =k ||~ N?- =2k’n?
N 2N2

By the same token, for large N, the numerator can be approximated as 1+
cos((2rt/n)k) ~ 2 and therefore (by bringing A =2 over to the left-hand side)
the above expansion becomes

e 1+2) 1+ 5 1+ 2
_ X P JE— ...
2 72 472 972

Finally, we replace x by jrr¢ to obtain:

sin(nt) t2
Tt _n( _ﬁ)

n=1

Rigorous Proof. Consider the Fourier series expansion of the even func-
tion f(x) = cos(7x) periodized over the interval [, 7z]. We have

1 (o.¢]
flx)= an +Z ancos(nx)
n=1
with

1 T
a,= Ef cos(tx)cos(nx)dx
-7

— Ef 1 (cos((t +n)x) +cos((t — n)x)) dx
T, 2

_ 1 (sin((r+n)r)  sin((t—n)n)
T ( T+n * T—n )
_ 2sin(t7) (—1)"7

T 72— n?
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so that

cos(Ttx)=

272 721 g2_22 g2_32

27 siI;(TTE) ( 1 cos(x) + cos(2x)  cos(3x) +)

In particular, for x = 7 we have

f )_ZT( 1 n 1 n 1 N 1 N
o Tm—_n 272 21 7222 g2_32 )

which we can rewrite as

1 —27
t(nr)—-— |= ) ——
n(co (t7) 7'67) an_TZ

n=1

If we now integrate between 0 and ¢ both sides of the equation we have

t ‘ . .
f (Cot(m') - i) drr=in DD [Sm(ﬂt)]
0 T T,

Tt

and

['S 22 e-Sufi-£)-n 1 (-2)

n=1 n=1

from which, finally,

sin(nt) t2
o [1 (1 B ﬁ)

n=1

Further Reading

The sampling theorem is often credited to C. Shannon, and indeed it ap-
pears with a sketchy proof in his foundational 1948 paper “A Mathemati-
cal Theory of Communication”, Bell System Technical Journal, Vol. 27, 1948,
pp. 379-423 and pp. 623-656. Contemporary treatments can be found in
all signal processing books, but also in more mathematical texts, such as
S. Mallat’'s A Wavelet Tour of Signal Processing (Academic Press, 1998), or
the soon to be published The World of Fourier and Wavelets by M. Vetterli,
J. Kovacevic and V. Goyal. These more modern treatments take a Hilbert
space point of view, which allows the generalization of sampling theorems

to more general spaces than just bandlimited functions.
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Exercise 9.1: Zero-order hold. Consider a discrete-time sequence x[n]
with DTFT X(e/«). Next, consider the continuous-time interpolated signal

00

xo(t) = Z x[n]rect(t —n)

n=—00

i.e. the signal interpolated with a zero-centered zero-order hold and
T =1sec.

(a) Express Xo(jQ) (the spectrum of xo(t)) in terms of X(e/ ).

(b) Compare Xo(jf2) to X(j€2). We can look at X(j2) as the Fourier trans-
form of the signal obtained from the sinc interpolation of x[n] (always
with T=1):

x(t)= Zx[n] sinc(t — n)

nez
Comment on the result: you should point out two major problems.

So, as it appears, interpolating with a zero-order hold introduces a distortion
in the interpolated signal with respect to the sinc interpolation in the region
—n < Q < 7. Furthermore, it makes the signal non-bandlimited outside the
region —t < < 7. The signal x(¢) can be obtained from the zero-order hold
interpolation xo(¢) as x(¢) = xo(t)* g(t) for some filter g(z).

(c) Sketch the frequency response of g(t).

(d) Propose two solutions (one in the continuous-time domain, and an-
other in the discrete-time domain) to eliminate or attenuate the dis-
tortion due to the zero-order hold. Discuss the advantages and disad-
vantages of each.

Exercise 9.2: A bizarre interpolator. Consider the local interpolation
scheme of the previous exercise but assume that the characteristic of the
interpolator is the following:

1-2|t| forl|t|<1/2
I(t)= )
0 otherwise

This is a triangular characteristic with the same support as the zero-order
hold. If we pick an interpolation interval T; and interpolate a given discrete-
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time signal x[n] with I(¢), we obtain a continuous-time signal:

x(t)=2x[n] I(t _T’:Ts)

which looks like this:

1.0 1

“l A\ |
T T T
0 1 3 4 \V/
05 | .

-1.0 | R

Assume that the spectrum of x[n] between —7 and 7 is

X(e/®)= 1 for|w|<2m/3
0 otherwise

(with the obvious 27t-periodicity over the entire frequency axis).

(a) Compute and sketch the Fourier transform I(j2) of the interpolating
function I(#). (Recall that the triangular function can be expressed as
the convolution of rect(z/2) with itself).

(b) Sketch the Fourier transform X(j(2) of the interpolated signal x(t); in
particular, clearly mark the Nyquist frequency Qn = 7/ Ts.

(c) The use of I(t) instead of a sinc interpolator introduces two types of
errors: briefly describe them.

(d) To eliminate the error in the baseband [—Qy,Qn] we can pre-filter the
signal x[n] with a filter k[n] before interpolating with I(¢). Write the
frequency response of the discrete-time filter H(e/ ).

Exercise 9.3: Another view of sampling. One of the standard ways of
describing the sampling operation relies on the concept of “modulation by
a pulse train”. Choose a sampling interval 7; and define a continuous-time
pulse train p(t) as

p(t)= Y 8(t—kT)

k=—00
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The Fourier Transform of the pulse train is
P(jQ) = n i 5(Q—k2—ﬂ)
T, ~ T,
This is tricky to show, so just take the result as is. The “sampled” signal is
simply the modulation of an arbitrary-continuous time signal x(¢) by the
pulse train:

x5(2) = p(t)x(t)
Note that, now, this sampled signal is still continuous time but, by the prop-
erties of the delta function, is non-zero only at multiples of T; in a sense,
xs(t) is a discrete-time signal brutally embedded in the continuous time
world. Here is the question: derive the Fourier transform of x(¢) and show
that if x(¢) is bandlimited to 7/ T; then we can reconstruct x(¢) from x,(¢).

Exercise 9.4: Aliasing can be good! Consider a real, continuous-time
signal x.(¢) with the following spectrum X.(j):

-2 —Qp 0 Qo 209

(a) What is the bandwidth of the signal? What is the minimum sampling
period in order to satisfy the sampling theorem?

(b) Take a sampling period T; = 7t/€Qy; clearly, with this sampling period,
there will be aliasing. Plot the DTFT of the discrete-time signal x,[n] =
xe(nTy).

(c) Suggest a block diagram to reconstruct x.(t) from x,[n].

(d) With such a scheme available, we can therefore exploit aliasing to re-
duce the sampling frequency necessary to sample a bandpass signal.
In general, what is the minimum sampling frequency to be able to re-
construct, with the above strategy, a real signal whose frequency sup-
port on the positive axis is [Qg,2;] (with the usual symmetry around
zero, of course)?
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Exercise 9.5: Digital processing of continuous-time signals. For
your birthday, you receive an unexpected present: a 4 MHz A/D converter,
complete with anti-aliasing filter. This means you can safely sample signals
up to a frequency of 2 MHz; since this frequency is above the AM radio
frequency band, you decide to hook up the A/D to your favorite signal pro-
cessing system and build an entirely digital radio receiver. In this exercise
we will explore how to do so.

Simply, assume that the AM radio spectrum extends from 1 Mhz to 1.2 Mhz
and that in this band you have ten channels side by side, each one of which
occupies 20 KHz.

(a) Sketch the digital spectrum at the output of the A/D converter, and
show the bands occupied by the channels, numbered from 1 to 10,
with their beginning and end frequencies.

The first thing that you need to do is to find a way to isolate the channel you
want to listen to and to eliminate the rest. For this, you need a bandpass
filter centered on the band of interest. Of course, this filter must be tunable
in the sense that you must be able to change its spectral location when you
want to change station. An easy way to obtain a tunable bandpass filter is
by modulating a lowpass filter with a sinusoidal oscillator whose frequency
is controllable by the user:

(b) Asanexample of a tunable filter, assume h[n] is an ideal lowpass filter
with cutoff frequency /8. Plot the magnitude response of the filter
hm[n] = cos(wmn)hln], where w,, = ©/2; w,, is called the tuning
frequency.

(c) Specify the cutoff frequency of a lowpass filter which can be used to
select one of the AM channels above.

(d) Specify the tuning frequencies for channel 1, 5 and 10.

Now that you know how to select a channel, all that is left to do is to demod-
ulate the signal and feed it to a D/A converter and to a loudspeaker.

(e) Sketch the complete block diagram of the radio receiver, from the an-
tenna going into the A/D converter to the final loudspeaker. Use only
one sinusoidal oscillator. Do not forget the filter before the D/A (spec-
ify its bandwidth).

The whole receiver now works at a rate of 4 MHz; since it outputs audio
signals, this is clearly a waste.
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(f) Which is the minimum D/A frequency you can use? Modify the re-
ceiver’s block diagram with the necessary elements to use a low fre-
quency D/A.

Exercise 9.6: Acoustic aliasing. Assume x(t) is a continuous-time pure
sinusoid at 10 KHz. It is sampled with a sampler at 8 KHz and then interpo-
lated back to a continuous-time signal with an interpolator at 8 KHz. What
is the perceived frequency of the interpolated sinusoid?

Exercise 9.7: Interpolation subtleties. We have seen that any discrete-
time sequence can be sinc-interpolated into a continuous-time signal which
is Qn-bandlimited; 2y depends on the interpolation interval T via the rela-
tion Qny =7/ T;.

Consider the continuous-time signal x.(t) = e~*/%s and the discrete-time
sequence x[n] = e~". Clearly, x.(n T;) = x[n]; but, can we also say that x.(t)
is the signal we obtain if we apply sinc interpolation to the sequence x[n] =
e~ " with interpolation interval 7;? Explain in detail.

Exercise 9.8: Time and frequency. Consider a real continuous-time
signal x(¢). All you know about the signal is that x(¢) = 0 for |¢| > ;. Can
you determine a sampling frequency F; so that when you sample x(t), there
is no aliasing? Explain.

Exercise 9.9: Aliasing in time? Consider an N-periodic discrete-time
signal £[n], with N an even number, and let X[k] be its DFS:

N-1
X[k]:Zf[n]e—f%"k, kez
n=0

Let Y[m] = X[2m], i.e. a “subsampled” version of the DFS coefficients; clearly
this defines a (IN/2)-periodic sequence of DFS coefficients. Now consider
the (N/2)-point inverse DFS of Y[m] and call this (N /2)-periodic signal j [n]:
N/2—1 .
ylnl=~ D vklelvE, nez
k=0

Express j[n] in terms of X[n] and describe in a few words what has hap-
pened to ¥[n] and why.
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Chapter 10

A/D and D/A Conversions

The word “digital” in “digital signal processing” indicates that, in the repre-
sentation of a signal, both time and amplitude are discrete quantities. The
necessity to discretize the amplitude values of a discrete-time signal comes
from the fact that, in the digital world, all variables are necessarily repre-
sented with a finite precision. Specifically, general-purpose signal proces-
sors are nothing but streamlined processing units which address memory
locations whose granularity is an integer number of bits. The conversion
from the “real world” analog value of a signal to its discretized digital coun-
terpart is called analog-to-digital (A/D) conversion. Analogously, a transi-
tion in the opposite direction is shorthanded as a D/A conversion; in this
case, we are associating a physical analog value to a digital internal repre-
sentation of a signal sample. Note that, just as was the case with sampling,
quantization and its inverse lie at the boundary between the analog and the
digital world and, as such, they are performed by actual pieces of complex,
dedicated hardware.

10.1 Quantization

The sampling theorem described in Chapter 9 allowed us to represent a ban-
dlimited signal by means of a discrete-time sequence of samples taken at
instants multiple of a sampling period T;. In order to store or process this
sequence of numbers x[n] = x(nT;), n € Z, we need to transform the real
values x[n] into a format which fits the memory model of a computer; two
such formats are, for instance, finite-precision integers or finite-precision
floating point numbers (which are nothing but integers associated to a scale
factor). In both cases, we need to map the real line or an interval thereof
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(i.e. the range of x(¢)) onto a countable set of values. Unfortunately, because
of this loss of dimensionality, this mapping is irreversible, which leads to
approximation errors. Consider a bandlimited input signal x(#), whose am-
plitude is known to vary between the values A and B. After sampling, each
sample x[n] will have to be stored as a R-bit integer, i.e. as one out of K = 2%
possible values. An intuitive solution is to divide the [A, B] interval into K
non-overlapping subintervals I} such that

K—1
|J =14, B]
k=0

The intervals are defined by K + 1 points i, so that for each interval we can
write

Iy =ik, ik+1], k=0,1,...,K—1

Soip=A,ig=B,and ip <i; <...<ig_1 <ig.An example of this subdivi-
sion for R =2 is shown in Figure 10.1 in which, arbitrarily. In order to map
the input samples to a set of integers, we introduce the following quantiza-
tion function:

Q{x[n]}={k|x[n]€]k} (10.1)

In other words, quantization associates to the sample value x[n], the integer
index of the interval onto which x[n] “falls”. One of the fundamental ques-
tions in the design of a good quantizer is how to choose the splitting points
ix for a given class of input signals as well as the reconstruction values.

A %o 1 %2 3 B
: 1 1 1 :

1o 4

i iz i3 l
Iy I I I3
k=00 k=01 k=10 k=11

Figure 10.1 Example of quantization for an interval; quantization intervals I} =
[k, ik+1], representative values X; and binary quantization levels k.

Quantization Error. Since all the (infinite) values falling onto the interval
I are mapped to the same index, precious information is lost. This intro-
duces an error in the quantized representation of a signal which we analyze
in detail in the following and which we will strive to minimize. Note that
quantization is a highly nonlinear operation since, in general,

2{x[n]+y[nl} #2{x[n]} +2{y[nl}
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This is related to the quantization error since, if a € I and a + b € I} then
2{a+b} = 2{a}; small perturbations in the signal are lost in quantization.
On the other hand, consider a constant signal x[n] = i,, for some m < K
(i.e. the value of the signal coincides with the lower limit of one of the quan-
tization intervals); consider now a small “perturbation” noise sequence €[n],
with uniform distribution over [-U, U] and U arbitrarily small. The quan-
tized signal:

k—1 ife[n]<0

Q{x[n]—i—e[n]}:{k ife[n] >0

In other words, the quantized signal will oscillate randomly with 50 % chance
between two neighboring quantization levels. This can create disruptive ar-
tifacts in a digital signal, and it is counteracted by special techniques called
dithering for which we refer to the bibliography.

Reconstruction. The output of a quantizer is an abstract internal repre-
sentation of a signal, where actual values are replaced by (binary) indices.
In order to process or interpolate back such a signal, we need to somehow
“undo” the quantization and, to achieve this, we need to associate back a
physical value to each of the quantizer’s indices. Reconstruction is entirely
dependent on the original quantizer and, intuitively, it is clear that the value
X which we associate to index k should belong to the interval I;. For ex-
ample, in the absence of any other information on x[n], it is reasonable to
choose the interval’s midpoint as the representative value. In any case, the
reconstructed signal will be

z[n]={xk, k=2{x[n]}} (10.2)

and the second fundamental question in quantizer design is how to choose
the representative values X; so that the quantization error is minimized.
The error introduced by the whole quantization/reconstruction chain can
therefore be written out as

e[n]=&(x[n]) = ([n]—x[n]) (10.3)

For a graphical example see Figure 10.2. Note that, often, with an abuse of
notation, we will use the term “quantized signal” to indicate the sequence

x[n]

Figure 10.2 Example of quantization error.
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of reconstruction values associated to the sequence of quantization indices
as produced by the quantizer. In other words, we will often imply, for short,

x[n]=2{x[nl}

10.1.1 Uniform Scalar Quantization

Quantization, as we mentioned, is a non-linear operation and it is there-
fore quite difficult to analyze in general; the goal is to obtain some statistical
description of the quantization error for classes of stochastic input signals.
In order to make the problem tractable and solvable, and thus gain some
precious insight on the mathematics of quantization, simplified models are
often used. The simplest such model is the uniform scalar quantization
scenario. By scalar quantization, we indicate that each input sample x[n]
is quantized independently; more sophisticated techniques would take ad-
vantage of the correlation between neighboring samples to perform a joint
quantization which goes under the name of “vector quantization”. By uni-
form quantization, we indicate the key design choices for quantization and
reconstruction: given a budget of R bits per sample (known as the rate of
the digital signal), we will be able to quantize the input signal into K = 2R
distinct levels; in order to do so we need to split the range of the signal into
K intervals. It is immediately clear that such intervals should be disjoint
(as to have a unique quantized value for each input value) and they should
cover the whole range of the input. In the case of uniform quantization the
following design is used:

e Therange of the input x[n] is assumed to be in the interval [A, B], with
A,BeR.

e The range [A, B] is split into K = 2R contiguous intervals I of equal
width A=(B—A)/K.

e Each reconstruction point & is chosen to be the midpoint of the cor-
responding interval Ii.

An example of the input/output characteristic of a uniform quantizer is
shown in Figure 10.3 for arate of 3 bits/sample and a signal limited between
—land 1.

Uniform Quantization of a Uniformly Distributed Input. In order to
precisely evaluate the distortion introduced by a quantization and recon-
struction chain we need to formulate some assumption on the statistical
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110

101

0.25

100

-1.00 -0.75 —-0.50 —0.25 0.25 0.50 0.75 1.00

-0.25 +

010

—-0.50 +

001

-0.75 +

000

—-1.00 -~

Figure 10.3 3-bit quantization of x[n] € [—1,1]. Eight uniform intervals are de-
fined between —1 and 1, and the approximation X[n] is chosen as the interval’s
mid-point. Nominal quantization indices (in binary) are shown over the recon-
struction levels.

properties of the input signal. of the input signal. Let us start with a discrete-
time signal x[n] with the following characteristics:

e x[n] is uniformly distributed over the [A, B] interval;
e x[n]is ani.i.d. process (independent and identically distributed).

While simple, this signal model manages to capture the essence of many
real-world quantization problems. For a uniformly distributed input signal,
the design choices of a uniform quantizer turn out to be optimal with re-
spect to the minimization of the power of the quantization error P,. If we
consider the expression for the power

B

P, =E He[n]ﬂ -] ﬁgz(x)dx (10.4)
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and we remark that the error function localizes over the quantization inter-
vals as

EX)| e = (x — k)

x€ly
then we can split the above integral as

k41

=
Pp=—r x— %) dx 10.5
e == kz:(:) Jik (x — &) (10.5)
where iy = A+ kA, xp = i +A/2 and A = (B —A)/K. In order to show
that the quantizer is optimal, we need to show that these values for i and
Xk lie at a minimum for the error function P, or, in other words, that they
are a solution to the following system of equations:

oP,
af =0 k=0,1,...,K—1
. (10.6)
oP,
—=0 k=12,...,K—-1
alk
By plugging (10.5) into the first equation in (10.6) we have
or, @ (™ o o
— o —— (x = &%) dx = (ix — £k = (ik+1 — X f
8xk 8xk i
AV [ AN
()3~
3
The same can easily be verified for the second equation in (10.6).
Finally, we can determine the power of the quantization error:
K-1
P, = ZE [(x[n] —xk)2 ‘ x[n] € Ik] P[x[n] € Ii]
k=0
fA/Z 1 , p
= —x“dx
ap B
A2
=— 10.7
D (10.7)

where we have used the fact that, since the signal is uniformly distributed,
P[x[n] €I;] = 1/K for all k. If we consider the average power (i.e. the vari-
ance) of the input signal:

_ (B—Ap
12
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and we use the fact that A =(B — A)/K =(B — A)/2R, we can write
P,=0227%k (10.8)

This exponential decay of the error, as a function of the rate, is a key concept,
not only with respect to quantization but, much more generally, with respect
to data compression. Finally, if we divide by the power of the input signal,
we can arrive at a convenient and compact expression for the signal to noise
ratio of the digital signal:

SNR = 22% (10.9)
If we express the SNR in dB, the above equation becomes:
SNRgg = 10 log,, 2> ~6R dB (10.10)

This provides us with an extremely practical rule of thumb for the distortion
caused by quantization: each additional bit per sample improves the SNR by
6 dB. A compact disk, for instance, which uses a quantization of 16 bits per
sample, has an SNR (or maximum dynamic range) of approximately 96 dB.
Remember, however, that the above expression has been derived under very
unrealistic assumptions for the input signal, the most limiting of which is
that input samples are uncorrelated, which makes the quantization error
uncorrelated as well. This, is of course, far from true in any non-noise signal
so that the 6 dB/bit rule must be treated as a rough estimate.

Uniform Quantization of Normally Distributed Input. Consider now
a more realistic distribution for the input signal x[n], namely the Gaussian
distribution; the input signal is now assumed to be white Gaussian noise of
variance o2. Suppose we fix the size of the quantization interval A; since,
in this case, the support of the probability density function is infinite, we
either need an infinite number of bins (and therefore an infinite rate), or we
need to “clip” x[n] so that all values fall within a finite interval. In the purely
theoretical case of an infinite number of quantization bins, it can be proven
that the error power for a zero-mean Gaussian random variable of variance
o? quantized into bins of size A is

V3n
=—o0
2

P, 2A? (10.11)

In a practical system, when a finite number of bins is used, x[n] is clipped
outside of an [A, B] interval, which introduces an additional error, due to
the loss of the tails of the distribution. It is customary to choose B =—A =
20; this is an instance of the so-called “4¢ rule”, stating that over 99.5% of
the probability mass of a zero-mean Gaussian variable with variance o2 is
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comprised between —20 and 2¢. With this choice, and with a rate of R bits
per sample, we can build a uniform quantizer with A = 40 /2R. The total
error power increase because of clipping but not by much; essentially, the
behavior is still given by an expression similar to (10.11) which, expressed as
a function of the rate, can be written as

P,=Cog?272R (10.12)

where C is a constant larger but of the same order as V3m/2=2.72in(10.11).
Again, the signal to noise ratio turns out to be an exponentially increasing
function of the rate

1
SNR = — 22R
C

with only a constant to reduce performance with respect to the uniformly
distributed input. Again, the 6 dB/bit rule applies, with the usual caveats.

10.1.2 Advanced Quantizers

The Lloyd-Max algorithm is a procedure to design an optimal quantizer for
an input signal with an arbitrary (but known) probability density function.
The starting hypotheses for the Lloyd-Max procedure are the following:

e x[n]is bounded over the [A, B] interval;
e x[n]is ani.i.d. process;
e x[n] is distributed with pdf f (x).

Under these assumptions the idea is to solve a system of equations simi-
lar to (10.6) where, in this case, the pdf for the input is explicit in the error
integral. The solution defines the optimal quantizer for the given input dis-
tribution, i.e. the quantizer which minimizes the associated error.

The error can be expressed as

K=1 fik+1
P, = Z J (x —%)? fr(x)dx (10.13)
k=0 i
where now the only known parameters are K, ip = A and ix = B and we
must solve

oP,
af:o k=0,1,...,K—1
Xk (10.14)

oP,
=0 k=1,2,....,K—1
alk
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The first equation can be efficiently solved noting that only one term in (10.13)
depends on % for a given value of k. Therefore:

op, o (" ,
= — i) fe(x)d
0% 0%x ), (=2 fxlx)dx

=f e £ fulx)dix

i k

which gives the optimal value for £ as

k41
f x fx(x)dx
fp = 2k (10.15)

k41

fx(x)dx

i
Note that the optimal value is the center of mass of the input distribution

over the quantization interval: %y = E[x|ix <x <ik4+1]. Similarly, we can
determine the boundaries of the quantization intervals as

or, _ o
iy Oix

=(if—Xp—1) felir)+ (= X) f2(ik)

f (x = xx)* fe(x)dx +f (x — e )’ fx(x)dX)

ir—1 123

from which

jo = HeLH Tk (10.16)
2

i.e. the optimal boundaries are the midpoints between optimal quantization
points. The system of Equations (10.15) and (10.16) can be solved (either
exacly or, more often, iteratively) to find the optimal parameters. In prac-
tice, however, the SNR improvement introduced by a Lloyd-Max quantizer
does not justify an ad-hoc hardware design effort and uniform quantizers
are used almost exclusively in the case of scalar quantization.

10.2 A/D Conversion

The process which transforms an analog continuous-time signal into a dig-
ital discrete-time signal is called analog-to-digital (A/D) conversion. Again,
it is important to remember that A/D conversion is the operation that lies
at the interface between the analog and the digital world and, therefore, it
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is performed by specialized hardware which encode the instantaneous volt-
age values of an electrical signal into a binary representation suitable for use
on a general-purpose processor. Once a suitable sampling frequency F; has
been chosen, the process is composed of four steps in cascade.

Analog Lowpass Filtering. An analog lowpass with cutoff F;/2 is a nec-
essary step even if the analog signal is virtually bandlimited because of the
noise: we need to eliminate the high-frequency noise which, because of
sampling, would alias back into the signal’s bandwidth. Since sharp ana-
log lowpass filters are “expensive”, the design usually allows for a certain
amount of slack by choosing a sampling frequency higher than the mini-
mum necessary.

Sample and Hold. The input signal is sampled by a structure similar to
that in Figure 10.4. The FET T1 acts as a solid-state switch and it is driven
by a train of pulses k(t) generated by a very stable crystal oscillator. The
pulses arrive F; times per second and they cause T to close briefly so that
the capacitor ClI is allowed to charge to the instantaneous value of the input
signal x.(n T;) (in Volts); the FET then opens immediately and the capacitor
remains charged to x.(nT;) over the time interval [nT;,(n +1)T;]. The key
element of the sample-and-hold circuit is therefore the capacitor, acting as
an instantaneous memory element for the input signal’s voltage value, while
the op-amps provide the necessary high-impedance interfaces to the input
signal and to the capacitor. The continuous-time signal produced by this
structure looks like the output of a zero-order hold interpolator (Fig. 9.1);
availability of a piecewise-constant signal between sampling instants is nec-
essary to allow the next steps in the chain to reach a stable output value.

x(1) + L 4

k(t) o

Figure 10.4 Sample and hold circuitry.
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Figure 10.5 Simple two-bit quantization circuitry.

Clipping. Clipping limits the range of the voltages which enter the quan-
tizer. The limiting function can be a hard threshold or, as in audio appli-
cations, a function called compander where the signal is leveled towards a
maximum via a smooth function (usually a sigmoid).

Quantization. The quantizer, electrically connected (via the clipper) to
the output of the sample-and-hold, is a circuit which follows the lines of
the schematics in Figure 10.6. This is called a flash (or parallel) quantiza-
tion scheme because the input sample is simultaneously compared to all
of the quantization thresholds i;. These are obtained via a voltage divider
realized by the cascade of equally-valued resistors shown on the left of the
circuit. In this simple example, the signal is quantized over the [—1j, 1§] in-
terval with 2 bits per sample and therefore four voltage levels are necessary.
To use the notation of Section 10.1 we have that io =—1§, i; =—0.5 1§, i =0,
i3 =0.51p, and i4 = V. These boundary voltages are fed to a parallel struc-
ture of op-amps acting as comparators; all the comparators, for which the
reference voltage is less than the input voltage, will have a high output and
the logic (XOR gates and diodes) will convert these high outputs into the
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proper binary value (in this case, a least significant and most significant bit
(LSB and MSB)). Because of their parallel structure, flash quantizers exhibit
a very short response time which allows their use with high sampling fre-
quencies. Unfortunately, they require an exponentially increasing number
of components per output bit (the number of comparators is on the order
of 28 where B is the rate of the signal in bits per sample). Other architec-
tures are based on iterative conversion techniques; while they require fewer
components, they are typically slower.

10.3 D/A Conversion

In the simplest case, digital-to-analog (D/A) conversion is performed by a
circuit which translates the binary internal representation of the samples
into a voltage output value; the voltage is kept constant between interpo-
lation times, thereby producing a zero-order-hold interpolated signal. Fur-
ther analog filtering may be employed to reduce the artifacts of the interpo-
lation (Sect. 11.4.2).

A typical example of D/A circuitry is shown in Figure 10.6. The op-amp
is configured as a voltage adder and is connected to a standard R/2R lad-
der. The ladder has as many “steps” as the number of bits B used to encode
each sample of the digital signal.(V Each bit is connected to a non-inverting
buffer which acts as a switch: for each “1” bit, the voltage ) is connected to
the associated step of the ladder, while for each “0” bit the step is connected

I

2R

—o0 x(t)

Figure 10.6 Simple three-bit D/A converter.

(DWe previously used the letter R to denote the rate of a quantized signal expressed in bits
per sample; we use B here to avoid confusion with the resistor’s value.
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to the ground. By repeatedly applying Thevenin’s theorem to each step in
the ladder it is easy to show that a voltage of |j appearing at the k-th bit
position (with k = 0 indicating the LSB and k = B — 1 indicating the MSB)
is equivalent to a voltage of 1§/28-% applied to the inverting input of the
op-amp with an impedance of 2R. By the property of superposition (applied
here to the linear ladder circuit), the output voltage over the time interval
(nT;,(n+1)T;] is

B-1 %
x(0)= by
k=0

where bj_,bj_,---bi'b] is the B-bit binary representation of the sample
x[n]. Note that 0 < x(t) < V; for a reconstruction interval between —j
and 1§, one can halve the value of the feedback resistor in the adder and add
an offset of — 1§ Volts to the output.

Example 10.1: Nonuniform quantization

All signal processing systems have an intrinsic range of admissible input val-
ues; in analog systems, for instance, the nominal range corresponds to the
voltage excursion for which the system behaves linearly. In a digital system
the internal range is determined by the numerical precision used in repre-
senting both the samples and the filter coefficients, while the input range is
fixed by the A/D converter, again in terms of maximum and minimum volt-
ages. If the analog samples exceed the specifications, the system introduces
some type of nonlinear distortion:

e In analog system the distortion depends on the saturation curves of
the active components. Most of the audiophile debate on the supe-
riority of tubes over solid-state electronics hinges upon the “natural”
smoothness of the saturation curves sported by vacuum tubes. Also,
note that sometimes the nonlinear distortion caused by saturation is
a sought-after artifact, as in the case of guitar effects.

¢ In digital systems the distortion depends on the truncation charac-
teristic of the A/D converter: however, quantization clipping is very
disturbing acoustically and great care is taken to avoid it.

In order to avoid distortion, a possible approach is to normalize the input
signal so that it never exceeds the nominal range. The dynamic range of a
signal measures the ratio between its highest- and lowest-energy sections;
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in the case of audio, the dynamic range measures how loud a signal gets with
respect to silence. If an audio signal contains some amplitude peaks which
exceed the nominal range but is otherwise not very loud, a normalization
procedure would “squish” most of the signal to inaudible levels. This is for
instance the case of speech, in which plosive sounds constitute high-energy
bursts; if speech is normalized uniformly (i.e. if its amplitude is multiplied
by a factor so that the peaks are within the range) softer sounds such as sibi-
lants and some vowels end up being almost unintelligible. The solution is to
use nonuniform dynamic range compression, also known as companding.
The u-law compander, commonly used in both analog and digital voice
communication devices, performs an instantaneous nonlinear transforma-
tion of a signal according to the input-output relation:

In(1+plx|)

€ {x}=sgn(x) (14 1)

(10.17)
where it is assumed that |x| < 1; the parameter u controls the shape of the
resulting curve and it is usually y = 255. The transformation is shown in
Figure 10.7 and we can see that it compresses the large-amplitude range
while steeply expanding the low-amplitude range (hence the name “com-
pander”); in so doing a previously peak-normalized signal regains power in
the low-amplitude regions.

€ {x}

Figure 10.7 u-law characteristic.
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If the companded signal is needed in quantized form, instead of running
the analog values through an analog compander and then quantize uni-
formly we can directly design a nonuniform quantizer which follows the
u-law characteristic. The method is shown in Figure 10.8 for a 3-bit quan-
tizer with only the positive x-axis displayed. The uniform subdivision of the
compander’s output defines four unequal quantization intervals; the split-
ting points are obtained using the inverse u-law transformation as

ir=sgn(2 - 1)% [(1 +p) - 1]

Cix}
1.00
0.75
0.50
0.25
LIy N ‘ x
X5 X6 X7 1

Figure 10.8 Quantized u-law characteristic (axes not in scale and x4 not shown for
lack of space).

Usually, u-law companding is used for voice signals in conjunction with
8-bit quantization. The dynamic range compression allows to represent a
wider dynamic range at alower SNR than with uniform quantization. To ob-
tain a quantitative measure of the gain, consider that over 8 bits the smallest
quantization interval is

1
A=—[1+w"'?®-1]~1.7-10™
u
To obtain the same resolution with a uniform quantizer we should use
[—log, A]=13 bits
so that the SNR gain is approximately 30 dBs.
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Further Reading

Quantization is a key topic both in A/D and D/A conversion and in sig-
nal compression. Yet it is often overlooked in standard texts. The book
by A. Gersho and R. M. Gray, Vector Quantization and Signal Compression
(Springer, 1991) provides a good discussion of the topic. An excellent
overview of quantization is given in R. M. Gray and D. L. Neuhof’s article
“Quantization”, in IEEE Transactions on Information Theory (October 1998).

Exercises

Exercise 10.1: Quantization error - |. Consider a stationary i.i.d. ran-
dom process x[n] whose samples are uniformly distributed over the [—1,1]
interval. Consider a quantizer £ {-} with the following characteristic:

-1 if-1<x<-05
2{x}=10 if —0.5<x<05
1 if0.5<x<1

The quantized process y [n] = 2{x[n]} is still i.i.d.; compute its power spec-
tral density P, (e/)

Exercise 10.2: Quantization error - Il. Consider a stationary i.i.d. ran-
dom process x[n] whose samples are uniformly distributed over the [—1,2]
interval. The process is quantized with a 1-bit quantizer 2 {-} with the fol-
lowing characteristic:

-1 ifx<0
2ix}=
+1 ifx>0

Compute the signal to noise ratio at the output of the quantizer.

Exercise 10.3: More samples or more bits? You have a continuous-
time signal (for example, a music source), which you want to store on a dig-
ital medium such as a memory card. Assume, for simplicity, that the signal
has already been sampled (but not quantized) with a sampling frequency
F; =32,000 Hz with no aliasing. Assume further that the sampled signal can
be modeled as a white process x[n] with power spectral density

Px(ejw) = 0')25

and that the pdf of each sample is uniform on the [—1, 1] interval.
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Now you need to quantize and store the signal. Your constraints are the
following:

(a) You want to store exactly one second’s worth of the input signal.
(b) The capacity of the memory card is 32,000 bytes.

(c) You can either use a 8-bit quantizer (“Quantizer A”) or a 16-bit quan-
tizer (“Quantizer B”). Both quantizers are uniform over the [—1,1] in-
terval.

You come up with two possible schemes:
I You quantize the samples with quantizer A and store them on the card.

II You first downsample the signal by 2 (with lowpass filtering) and then
use quantizer B.

Clearly both schemes fulfill your constraints. Question: which is the config-
uration which minimizes the overall mean square error between the origi-
nal signal and the digitized signal? Show why. As a guideline, note that the
MSE will be composed of two independent parts: the one introduced by the
quantizers and, for the second scheme, the one which is introduced by the
lowpass filter before the downsampler. For the quantizer error, you can as-
sume that the downsampled process still remains a uniform, i.i.d. process.
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Chapter 11

Multirate Signal Processing

The sampling theorem in Chapter 9 provided us with a tool to map a contin-
uous-time signal to a sequence of discrete-time samples taken at a given
sampling rate. By choosing a different sampling rate, the same continuous-
time signal can be mapped to an arbitrary number of different discrete-time
signals. What is the relationship between these different discrete-time se-
quences? Can they be transformed into each other entirely from within the
discrete-time world? These are the questions that multirate theory sets out
to answer.

The conversion from one sampling rate to another can always take the
“obvious” route via continuous time, i.e. via interpolation and resampling.
This is clearly disadvantageous, both from the point of view of the needed
equipment and from the point of view of the quality loss which always takes
place upon quitting the digital discrete-time domain. That was the ratio-
nale, for instance, of an infamous engineering decision taken by the audio
industry in the early 90’s. In those years, after compact disk players had
been around for about a decade, digital cassette players started to appear
in the market under the name of DAT. The decision was to use a different
and highly incompatible sampling rate for the DAT with respect to the CD
(48 Khz vs. 44.1 Khz) so as to make it difficult to obtain perfect digital copies
of existing CDs.)” Multirate signal processing rendered that strategy moot,
as we will see.

More generally, multirate signal processing not only comes to help when-
ever a conversion between different standards is needed, but it is also a full-
fledged signal processing tool in its own right with many fruitful applica-
tions in the design of efficient filtering schemes and of telecommunication

(DWhile DATSs are all but extinct today, the problem remains of actuality since DVDs sport
a sampling rate of 48 Khz as well.
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systems. Finally, multirate theory is at the cornerstone of advanced process-
ing techniques which go under the name of time-frequency analysis.

11.1 Downsampling

Downsampling by N (also called subsampling or decimation®) creates a
lower-rate sequence by keeping only one out of N samples in the original
signal. If we call ¥y the downsampling operator, we have

xnpln] = 2n{x[n]} =x[nN] (11.1)

Downsampling effectively discards N —1 out of N samples and, as such, may
cause a loss of information in the original sequence; to understand when
and how this happens, we need to arrive at a frequency domain representa-
tion of the downsampled sequence.

x[n] @ Xnpln]

x[n] @ xnu(n]

Figure 11.1 Downsampling and upsampling operators.

11.1.1 Properties of the Downsampling Operator

Let us consider, as an example, the downsampling by 2 operator %, and let
us write out explicitly its effect; if xop[n] = Z»{x[n]} we have

x[n]=..., x[-2], x[-1], x[0], x[1], x[2], ...
Xopln]=..., x[—4], x[-2], x[0], x[2], x[4], ...

Note that the time origin is extremely important, since:
Dix[n+1]}=..., x[-5], x[-3], x[1], x[3], x[5], ...

as, according to the definition, 2,{x[n+1]} = x[2n+1]. We have just shown
that the downsampling operator is not time-invariant. More precisely, the

@Technically, decimation means 9 out of 10 and refers to a roman custom of killing every
10th soldier of a defeated army...
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downsampling operator is defined as periodically time-varying since, if
xnpln] = Zn{x[n]}, then:

In{x[n—kN]}=xnpln —k] (11.2)

It is trivial to show that the downsampling operator is indeed a linear oper-
ator.

One of the fundamental consequences of the lack of time-invariance is
that, now, one of the key properties of LTI systems no longer holds for the
downsampling operator; indeed, complex sinusoids are no longer eigense-
quences. As an example, consider x[n] = (—1)" = e/™"*, which is the highest-
frequency discrete-time sinusoid. After downsampling by 2, we obtain:

xop[n]=x[2n] = (-1)*" =1 (11.3)

which is the lowest-frequency sinusoid in discrete time. This is one instance
of the information loss inherent to downsampling and to understand how it
operates we need to move to the frequency domain.

11.1.2 Frequency-Domain Representation

In order to obtain a frequency-domain representation of a downsampling
by N, first consider the z-transform of the downsampled signal:

o0

Xnp(2)= Z x[nN]z™" (11.4)

n=—0oo
Now consider an “auxiliary” z-transform X,(z) defined as

o0

Xa(2)= Z x[nN]z 7N (11.5)

n=—00
The interest of X,(z) lies with the fact that, if we can obtain a closed-form
expression for it, we can then write out Xyp(z) simply as

Xnp(2)=Xa(2"N) (11.6)

Clearly, X,(z) can be derived from X(z), the z-transform of the original sig-
nal, by “killing off” all the terms in the z-transform sum whose index is not
amultiple of N; in other words we can write

Xa(z)= Y Enlnlx[nlz™" (11.7)

n=—oo



296 Downsampling

where & y[n] is a “selector” sequence defined as

Enlnl=

1 for n multiple of N
0 otherwise

The question now is to find an expression for such a sequence; to this end,
let us recall a very early result about the orthogonality of the roots of unity
(see Equation (4.4)), which we can rewrite as follows:

. (11.8)
0 otherwise

Nz_l wkn — {N for n multiple of N
ARES
k=0
- 2T
where, as per usual, Wy = e/ ~. Clearly, we can define our desired selector
sequence as

1 N-1

Enlnl = > Wi

k=0
and we can therefore write

1 oo N-1
Xa(z)=ﬁ Z ZWA’,C"x[n]z_"
nN=—00 k=
=NZ Z x[n](Wkz=1)"
k n=-—o00
N—

Il
- o

X(Wkz) (11.9)
0

2|~

k

so that finally:

N-1
1
XND(z):NZX(WA’,Czl/N) (11.10)
k=0

The Fourier transform of the downsampled signal is obtained by evalu-
ating Xy p(z) on the unit circle; explicitly, we have

N-1
. 1 Py pig

Xnp(e/®)= X(el &%) (11.11)

0

k=
The resulting spectrum is, therefore, the scaled sum of N superimposed
copies of the original spectrum X(e/®); each copy is shifted in frequency

by a multiple of 27t/ N and the result is stretched by a factor of N. We are, in
many ways, in a situation similar to that of equation (9.33) where sampling
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created a periodization of the underlying spectrum; here the spectra are al-
ready inherently 27-periodic, and downsampling creates N — 1 additional
interleaved copies. Because of the superposition, aliasing can take place;
this is a consequence of the potential loss of information that occurs when
samples are discarded. It is easy to verify that in order for the spectral copies
in (11.10) not to overlap, the maximum (positive) frequency w of the origi-
nal spectrum® must be less than 7t/ N; this is the non-aliasing condition for
the downsampling operator. Conceptually, fulfillment of the non-aliasing
condition indicates that the discrete-time representation of the original sig-
nal is intrinsically redundant; (N — 1)/N of the information can be safely
discarded and this is mirrored by the fact that only 1/N of the spectral fre-
quency support is nonzero. We will see shortly that, in this case, the original
signal can be perfectly reconstructed with an upsampling and filtering op-
eration.

11.1.3 Examples

In the following graphical examples (Figs 11.2 to 11.6) the top panel shows
the original spectrum X(e/®); the second panel shows the same spectrum
but plotted over a larger frequency interval so as to make its periodic nature
explicit; the third panel shows (in different shades of gray) the individual
components of the sum in (11.10) before scaling and stretching by N, i.e. the
N copies X(WA’,‘ e/®)for k =0,1,...,N — 1; the fourth panel shows the final
Xnp(el®), with the individual components of the sum plotted with a dashed
line; finally, the last panel shows Xy p(e/®) over the usual [—7, 7] interval.

Downsampling by 2. If the downsampling factor is 2, the corresponding
two roots of unity are just &1 and we have

Xop(z)= = [X(2'/?)+ X(—2"/%)]

Xop(e!?)= [X(ej%) +X(ef(%—ﬁ))]

DN = DN =

Figure 11.2 shows an example of downsampling by 2 for a lowpass sig-
nal whose maximum frequency is wy = 7/2 (i.e. a half-band signal). The
non-aliasing condition is fulfilled and, in the superposition, the two shifted
versions of the spectrum do not overlap. As the frequency axis expands by a
factor of 2, the original half-band signal becomes full band.

®Here, for simplicity, we are imagining a lowpass real signal whose spectral magnitude is
symmetric. More complex cases exist and some examples will be described next.
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Figure 11.2 Downsampling by 2; the discrete-time signal’s highest frequency is
7/2 and no aliasing occurs.

Figure 11.3 shows an example in which the non-aliasing condition is vi-
olated. In this case, w); = 27t/3 > 7/2 and the spectral copies do overlap.
We can see that, as a consequence, the downsampled signal loses its low-
pass characteristics. Information is irretrievably lost and the original signal
cannot be reconstructed. We will see in the next Section the customary way
of dealing with this situation.
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Figure 11.3 Downsampling by 2; the discrete-time signal’s highest frequency is
larger than /2 (here, wy = 27/3) and aliasing corrupts the downsampled signal.

Downsampling by 3. If the downsampling factor is 3 we have
i 1 o i(@_2m j(@_4n
Xzp(e/®) = 3 [X(ef )+ X(e/GFN) 4 x(e/575 ))]

Figure 11.4 shows an example in which the non-aliasing condition is vi-
olated (wys =2m/3 > t/3). In particular, the superposition of the three spec-
tral copies is such that the resulting spectrum is flat.
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Figure 11.4 Downsampling by 3; the discrete-time signal’s highest frequency is
larger than 7/3 (here, wy = 27/3) and aliasing corrupts the downsampled signal.
Note the three replicas which contribute to the final spectrum.

Downsampling of a Highpass Signal. Figure 11.5 shows an exam-
ple of downsampling by 2 of a half-band highpass signal. Since the signal
occupies only the upper half of the [0, 7] frequency band (and, symmetri-
cally, only the lower half of the [—,0] interval), the interleaved copies do
not overlap and, technically, there is no aliasing. The shape of the signal,
however, is changed by the downsampling operation and what started out
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as a highpass signal is transformed into a lowpass signal. The details of the
transformation are clearer if, for the sake of example, we consider a com-
plex half-band highpass signal in which the positive and negative parts of
the spectrum are different. The steps involved in the downsampling of such
a signal are detailed in Figure 11.6 and it is apparent how the low and high
parts of the spectrum are interchanged. In both cases the original signal
can be exactly reconstructed (since there is no destructive overlap between
spectral copies) but the required procedure (which we will study in the ex-
ercises) is more complex than a simple upsampling.

X(e:f“’)

0 Y T !
-7 n/2 0 n/2 T
1 T
0 1 T T T 1
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1 T
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0 T i T =T T
37 =21 -7 0 s 2m 3n
T .
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0 T
-7 0 b

Figure 11.5 Downsampling by 2 of a highpass signal; note how aliasing changes
the nature of the spectrum.
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Figure 11.6 Downsampling by 2 of a complex highpass signal; the asymmetric
spectrum helps to understand how aliasing works.

11.1.4 Downsampling and Filtering

Because of aliasing, it is customary to filter a signal prior to downsampling.
The filter should be designed to eliminate aliasing by removing the high fre-
quency components which fold back onto the lower frequencies (remember
how the (—1)" signal ended up as the constant 1). For a downsampling by N,
this is accomplished by a lowpass filter with cutoff frequency w. = /N, and
the resulting structure is depicted in Figure 11.7.
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Figure 11.7 Anti-aliasing filter before downsampling. The filter is typically a low-
pass filter with cut-off frequency 7/ N.

An example of the processing chain is shown in Figure 11.8 for a down-
sampling factor of 2; a half-band lowpass filter is used to truncate the sig-
nal’s spectrum outside of the [—7n/2,7/2] interval and then downsampling

X(e/®)]

0

- -/2 0 /2 T
1 F ; E
0 T 1 T 1 T

-37 21 b 0 s 2m 3n
1 T
0 |l T T

-31 21 T 0 T 2n 3n

Figure 11.8 Downsampling by 2 with pre-filtering to avoid aliasing; an ideal low-
pass with cutoff frequency of 7/2 is used.
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proceeds as usual with non-overlapping spectral copies. Clearly, some in-
formation is lost and the original signal cannot be recovered exactly but the
distortion is controlled and less disruptive than foldover aliasing.

11.2 Upsampling

Upsampling by N produces a higher-rate sequence by creating N samples
out of every sample in the original signal. The upsampling operation con-
sists simply in inserting N — 1 zeros between every two input samples; if we
call % the upsampling operator, we have

x[k] forn=kN, k€Z
xNU[n]=02/N{x[n]}= 0 otherwise e

Upsampling is a much “nicer” operation than downsampling since no in-
formation is lost and the original signal can always be exactly recovered by
downsampling:

In{Unix[n]}} =x[n] (11.13)

Furthermore, the spectral description of upsampling is extremely simple; in
the z-transform domain we have

Xnul(z)= Z xnulnlz™"

n=—0oo

00 (11.14)
= Z x[k]z7FN = x(zV)
k=—00
and therefore
Xnu(el©)=X(el“N) (11.15)

so that upsampling is simply a contraction of the frequency axis by a fac-
tor of N. The inherent 27-periodicity of the spectrum must be taken into
account so that, in this contraction, the periodic repetitions of the base
spectrum are “drawn in” the [, ] interval. The effects of upsampling are
shown graphically for a simple signal in Figures 11.9 to 11.11; in all figures
the top panel shows the original spectrum X(e/®) over [—7, 7t]; the middle
panel shows the same spectrum over a wider range to make the 27- peri-
odicity explicitly; the last panel shows the upsampled spectrum Xyy(e/®),
highlighting the rescaling of the [-N7, N7t] interval.
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Figure 11.9 Upsampling by 2.
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Figure 11.10 Upsampling by 3.
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Figure 11.11 Upsampling by 4.

11.2.1 Upsampling and Interpolation

However simple, an upsampled signal suffers from two drawbacks. In the
time domain, the upsampled signal does not look “natural” since there are
N—1 zeros between every sample drawn from the input. Thus, a “smooth”®
input signal no longer looks smooth after upsampling, as shown in the top
two panels of Figure 11.13. A solution would be to try to interpolate the
original samples in order to “fill in” the gaps. In the frequency domain, on
the other hand, the repetitions of the base spectrum, which are drawn in by
the upsampling, do not look as if they belong to the [, 7] interval and it
seems natural to try to remove them. These two problems are actually one
and the same and they can be solved by an appropriate filter.

x[n] @ LP{n/N} |———y(n]

Figure 11.12 Interpolation after upsampling. The interpolation filter is equivalent
to a lowpass filter with cut-off frequency n/N.

@Informally, by “smooth” we refer to discrete-time signals which do not exhibit wide am-
plitude jumps between samples.
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The problem of filling the gaps between nonzero samples in an upsam-
pled sequence is, in many ways, similar to the discrete- to continuous-time
interpolation problem of Section 9.4, except that now we are operating en-
tirely in discrete-time. If we adapt the interpolation schemes that we have

already studied, we can describe the following cases:

N R

1—501 1 —i20 l |F10d 10 20 30
S— 1]
AR s

.ﬂTTTTNHHHHHHHH i

Figure 11.13 Upsampling by 4 in the time domain; original signal (top panel); por-
tion of the upsampled signal (second panel); interpolated signal with zero- and

first-order interpolators (third and fourth panels).
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Zero-Order Hold. In this discrete-time interpolation scheme, also known
as piecewise-constant interpolation, after upsampling by N, we use a filter
with impulse response:

ho[n]= (11.16)

1 n=01,...,.N—1
0 otherwise

which is shown in Figure 11.14. This interpolation filter simply repeats the
original input samples N times, giving a staircase approximation as shown
for example in the third panel of Figure 11.13.

First-Order Hold. In this discrete-time interpolation scheme, we obtain a
piecewise linear interpolation after upsampling by N by using

|n|
-4 N
hiln] = N < (11.17)

0 otherwise

The impulse response is the familiar triangular function® shown in Fig-
ure 11.14. An example of the resulting interpolation is shown in Figure 11.13.

il

* T T T T T T Y

423 21 ¢ 2 3 4 4 -3-2-10 1 2 3 4

Figure 11.14 Discrete-time zero-order and first-order interpolators for N =4.

Sinc Interpolation. We know that, in continuous time, the smoothest in-
terpolation is obtained by using a sinc function. This holds in discrete-time
as well, and the resulting interpolation filter is a discrete-time sinc:

. n
h[n]—smc(ﬁ) (11.18)

Note that the sinc above is equal to one for n = 0 and is equal to zero at all
integer multiples of N, n = kN; this fulfills the interpolation condition that,
after interpolation, the output equals the input at multiples of N
(i.e. (h*xyy)[n] =x[n] for n=kN).

®Once again, let us note that the triangle is the convolution of two rects, h,[n] =
(1/N)(holn]*ho[n]).
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Figure 11.15 Upsampling by 4 followed by ideal lowpass filtering.

The three impulse responses above are all lowpass filters; in particular,
the sinc interpolator is an ideal lowpass with cutoff frequency w, = n/N
while the others are approximations of the same. As a consequence, the ef-
fect of the interpolator in the frequency domain is the removal of the N —1
repeat spectra which have been drawn in the [—7, 7] interval. An example is
shown in Figure 11.15 where the signal in Figure 11.11 is filtered by an ideal
lowpass filter with cutoff 7t/4. It turns out that the smoothest possible in-
terpolation in the time domain corresponds to the removal of the spectral
repetitions in the frequency domain. An interpolation by the zero-order, or
first-order holds, only attenuates the replicas instead of performing a full
removal, as we can readily see by considering their frequency responses.
Since we are in discrete-time, however, there are no difficulties associated
to the design of a digital lowpass filter which performs extremely well. This
is in contrast to the design of discrete—to continuous—time interpolators,
which are analog designs. That is why sampling rate changes are much more
attractive in the discrete-time domain.
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11.3 Rational Sampling Rate Changes

So far we have examined methods which change (multiply or divide) the
implicit rate of a discrete-time signal by an integer factor. By combining up-
sampling and downsampling, we can achieve arbitrary rational sampling
rate changes. Typically, a rate change by N/M is obtained by cascading
an upsampler by N, a lowpass filter and a downsampler by M. The filter’s
cutoff frequency is the minimum of {7/N, 7/ M}; this follows from the fact
that upsampling and downsampling require lowpass filters with cutoff fre-
quencies of ©/N and 7/ M respectively, and the minimum cutoff frequency
dominates in the cascade. A block diagram of this system is shown in Fig-
ure 11.16.

x[n] @ @ y[n]

x[n]—»@— LP{r/N} LP{r/M} —@—y[n]

x[n] @ LP{min(rt/N,t/M)} @ y[n]

Figure 11.16 Sampling rate change by a rational factor N/M. Cascade of upsam-
pling and downsampling (top diagram); cascade with interpolation after upsam-
pling, and filtering before subsampling (middle diagram); the same cascade where
the two filters are replaced by the narrower of the two (bottom diagram).

The order of the upsampling and downsampling operators is crucial
since, in general, the operators are not commutative. It is easy to appre-
ciate this fact by means of a simple example; for a given sequence x[n] it
is

Do (% (x[n])) = x[n]

U (22(x[nl)) :{

x[n] for n even
0 for n odd

Conceptually, using an upsampler first is the logical thing to do since no
information is lost in a sample rate increase. Interestingly enough, however,
if the downsampling and upsampling factors N and M are coprime, the op-
erators do commute:

In (2% (x[n])) =2 (2n(x[n])) (11.19)
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The proof of this property is left as an exercise. This property can be put to
use in a rational sampling rate converter to minimize the number of opera-
tions, per sample in the middle filter.

As an example, we are now ready to solve the audio conversion problem
which was quoted at the beginning of the Chapter. To convert an audio file
sampled at 44 Khz (“CD-quality”) into an audio file which can be played
back at 48 Khz (“DVD-quality”) a rate change of 12/11 is necessary; this can
be achieved with the system shown at the top of Figure 11.17. Conversely,
DVD to CD conversion can be performed with a 11/12 rate changer, shown
at the bottom of Figure 11.17.©

Xcpln] @ LP{r/12} @ Xpvp[n]
Xpvpln] @ LP{r/12} @ Xcpln]

Figure 11.17 Conversion from CD to DVD and vice-versa conversely using rational
sampling rate changes.

11.4 Oversampling

Manipulating the sampling rate is useful a many more ways beyond simple
conversions between audio standards: oversampling is a case in point. The
term “oversampling” describes a situation in which a signal’s sampling rate
is made to be deliberately higher than the minimum required by the sam-
pling theorem. Oversampling is used to improve the performance of A/D
and D/A converters.

11.4.1 Oversampled A/D Conversion

If a continuous-time signal x(¢) is bandlimited, the sampling theorem guar-
antees that we can choose a sampling period T such that no error is intro-
duced by the sampling operation. The only source of error in A/D conver-
sion remains the distortion due to quantization; oversampling, in this case,
allows us to reduce this error by increasing the underlying sampling rate.

©®1n reality, the compact disk sampling rate is 44.1 Khz, so that the exact factor for the ra-
tional rate change should be 160/147. This is usually less practical so that other strate-
gies are usually put in place. See for instance Exercise 12.2.
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Under certain assumptions on the statistical properties of the input signal,
the quantization error associated to A/D conversion has been modeled in
Section 10.1.1 as an additive noise source. If x(t) is a Qx-bandlimited signal
and T; = /Qy, we can write:

x[n]=x(nT;)+ e[n]

0 Y

T 0 b
4 ' ' .. T T ]
2 . R
0 T T \y\ T T

-7 -31m/4 -21/4 -1/4 21/4 31/4 T

0 . NS

-7 0 T

Figure 11.18 Oversampling for A/D conversion: signal’s PSD (black) and quanti-
zation error’s PSD (gray). Critically sampled signal (top panel); oversampled signal
(middle panel); filtered and downsampled signal (bottom panel).
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with e[n] a white process of variance

A2
12
where A is the quantization interval. This is represented pictorially in the
top panel of Figure 11.18 which shows the power spectral densities for an ar-
bitrary critically sampled signal and for the associated quantization noise.”)
The bottom panel of Figure 11.18 shows the same quantities for the case in
which the input signal has been oversampled by a factor of four, i.e. for the
signal

xy[n]=x(nTy), T, =Ts/4

Pe

The scale change between signal and noise comes from equation (9.34) but
note that the signal-to-noise ratio of the oversampled signal is still the same.
However, now we are in the digital domain and it is easy to build a discrete-
time filter which removes the quantization error outside of the support of
the signal (i.e. outside of the [—7/4, /4] interval) and this improves the SNR.
Once the out-of-band noise is removed, we can use a downsampler by 4
to obtain a critically sampled signal for which the signal to noise ratio has
improved by a factor of 4 (or, alternatively, by 6 dB). The processing chain
is shown in Figure 11.19 for a generic oversampling factor N; as a rule of
thumb, the signal-to-noise ratio is improved by about 3 dB per octave of
oversampling, that is, each doubling of the sampling rate reduces the noise
variance by a factor of two, which is 20 log;,(2) ~ 3 dB.

x(1) S 2{} LP{7/N} —@—x[n]

T=T,/N

Figure 11.19 Oversampled A/D conversion chain.

The above example is deliberately lacking rigor in the derivations since
it turns out that a precise analysis of A/D oversampling is very difficult. It is
intuitively clear that some of the quantization noise will be rejected by this
procedure, but the fundamental assumption that the input signal is white
(and therefore that the quantization noise is uncorrelated) does not hold in
reality. In fact, as the sampling rate increases, successive samples exhibit a
higher and higher degree of correlation and most of the quantization noise
power ends up falling within the band of the signal.

(MIn our previous analysis of the quantization error we have assumed that the input is
uncorrelated; therefore the PSD in the figure should be flat for both the error and the
signal. We, nevertheless, use a nonflat shape for the signal both for clarity and to stress
the fact that, obviously such an assumption for the input is clearly flawed.
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11.4.2 Oversampled D/A Conversion

The sampling theorem states that, under the hypothesis of a bandlimited
input, sampling is invertible via a sinc interpolation. The sinc filter is an
ideal filter and therefore it is not realizable either in the digital or in the
analog domain. The analog sinc, therefore, must be approximated by some

T .
1t X(e/®)
0 T

s 0 T
1 -—-= 1

|
1
|
|
1
|
|
1
|
|
1
0 . . .

0 Qn 20N 40N 682y
1k ]
0 T T T

0 Qn 20N 40N 682y

Figure 11.20 Ideal (sinc) D/A interpolation. Original spectrum (top panel); peri-
odized analog spectrum and, in gray, frequency response of the sinc interpolator
(middle panel); analog spectrum (bottom panel).
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realizable interpolation filter. Recall that, once the interpolation period T; is
chosen, the continuous-time signal created by the interpolator is the mixed-
domain convolution (9.11), which we rewite here:

00

xc(t)= Z x[n][(t_TZlTs)

n=—oo

In the frequency domain this becomes
X(]’Q)zil(]‘i)x(ejﬂﬂ/ﬂw) (11.20)
¢ oy 20y ‘

with, as usual, Qy = 7t/ T;. The above expression is the product of two terms;
the last is the periodic digital spectrum, stretched so as to be 2Qy-periodic
and the firstis the frequency response of the analog interpolation filter, again
stretched by 2Qy. In the case of sinc interpolation, the frequency response
is a rect with cutoff frequency Qp, which “kills off” all the repetitions except
for the baseband period of the periodic spectrum. The result of sinc inter-
polation is represented in Figure 11.20; the top panel shows the spectrum
of an arbitrary discrete-time signal, the middle panel shows the two terms
of Equation (11.20) with the sinc response dashed in gray, and the bottom
panel shows the resulting analog spectrum. In both the middle and bot-
tom panels only the positive frequency axis is shown since all signals are
assumed to be real and, consequently, the magnitude spectra are symmet-
ric.

With a realizable interpolator, the stopband of the interpolation filter
cannot be uniformly zero and its transition band cannot be infinitely sharp.
As a consequence, the spectral copies to the left and right of the baseband
will “leak through” in the reconstructed analog signal. It is important to re-
mark at this point that the interpolator filter is an analog filter and, as such,
quite delicate to design. Without delving into too many details, there are
no FIR filters in the continuous-time domain so that all analog filters are
affected by stability problems and by design complexities associated to the
passive and active electronic components. In short, a good interpolator is
difficult to design and expensive to produce; so much so, in fact, that most
of the interpolators used in practical circuitry are just zero-order holds. Un-
fortunately, the frequency response of the zero-order hold is quite poor; it is
indeed easy to show that:

Iy(jQY) =sinc (%)

and that this response, while lowpass in nature, decays only as 1/Q. The re-
sults of zero-order hold D/A conversion are shown in Figure 11.21; the top
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panel shows the original digital spectrum and the middle panel shows the
two terms of Equation (11.20) with the magnitude response of the interpo-
lator dashed in gray. The spectrum of the interpolated signal (shown in the
bottom panel) exhibits several non-negligible instances of high-frequency

X(e/®)]

NN

T T T

0 Qn 20N 4QN

60N

Figure 11.21 Zero-order hold D/A interpolation. Original spectrum (top panel);
periodized analog spectrum and, in gray, frequency response of the zero-order hold
interpolator (middle panel); resulting analog spectrum (bottom panel).
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leakage centered around the multiples of twice the Nyquist frequency.®
These are particularly undesirable in audio applications (such as in a CD
player). Rather than using expensive and complex analog filters, the perfor-
mance of the D/A converter can be dramatically improved if we are willing
to perform the conversion at a higher rate than the strict minimum. This is
achieved by oversampling the signal in the digital domain and the block di-
agram of the operation is shown in Figure 11.22. Note that this is a paradig-
matic instance of cheap and easy discrete-time processing solving an oth-
erwise difficult analog design: the lowpass filter used in discrete-time over-
sampling is an FIR with arbitrarily high performance, a filter which is much
easier to design than an analog lowpass and has no stability problems. The
only price paid is an increase in the working frequency of the converter.

x[n] —@— LP{7/N} I x(1)

T=T,/N

Figure 11.22 Oversampled D/A conversion chain.

Figure 11.23 details an example of D/A conversion with an oversam-
pling factor of two. The top panel shows the spectrum of the oversampled
discrete-time signal, together with the associated repetitions in the [—7, 7]
interval which are going to be filtered out by a lowpass filter with cutoff
7t/2. The discrete-time filter response is dashed in gray in the top panel and,
while the displayed characteristic is that of an ideal lowpass, note that in the
discrete-time domain, we can approximate a very sharp filter rather easily.
The two terms of Equation (11.20) (with the magnitude response of the in-
terpolator dashed in gray) are shown in the middle panel; now the interpo-
lation frequency is Qn,0 =20y, i.e. twice the frequency used in the previous
example, in which the signal was critically sampled. Shrinking the spectrum
in the digital domain and stretching in the analog makes sure that the ana-
log spectrum is unchanged around the baseband. The final spectrum of the
interpolated signal is shown in the bottom panel and we can notice how the
first high frequency leakage occurs at twice the frequency of the previous
example and is smaller in amplitude. An oversampling of N with N > 2 will

® Another distortion introduced by the zero-order hold interpolator is due to the nonflat
response around zero in the passband; here, we will simply ignore this additional devia-
tion from the ideal case, noting that this distortion can be easily compensated for either
in the analog domain by an inverse filter or in the digital domain by an appropriate pre-
filter.
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push the leakage even higher up in frequency; at this point a very simple
analog lowpass (with a very large transition band) will suffice to remove all
undesired frequency components.

X(ei®) g

- -/2 0 /2 T

o NN

T T T

0 Q N 2Q N 40 N 6QN

Figure 11.23 Oversampled zero-order hold D/A interpolation, oversampling by 2.
Oversampled spectrum with digital interpolation filter response in gray (top panel);
periodized analog spectrum and, in gray, frequency response of the zero-order hold
interpolator at twice the minimum Nyquist frequency (middle panel); resulting
analog spectrum (bottom panel).



Multirate Signal Processing 319

Example 11.1: Radio over the phone

In the heyday of radio (up to the 50’s), a main station would often have the
necessity of providing audio content ahead of time to the ancillary broad-
casters in its geographically distributed network. Before digital signal pro-
cessing even existed, and before high-bandwidth communication lines be-
came a possibility, most point-to-point real-time communications were over
a standard telephone line and audio distribution was no exception. How-
ever, since telephone lines have a much smaller bandwidth than good qual-
ity audio, the idea was to play the content at lower speed so that the resulting
bandwidth could be made to fit into the telephone band. At the other end, a
tape would record the signal and then the signal could be sped up to normal
pitch. In the continuous-time world, we know that (see (9.8)):

FT{s(at)} = éS (j%)

so that a slowing down factor of two (a = 1/2) would halve the spectral oc-
cupancy of the signal.

Today, with digital signal processing at our disposal, we have many more
choices and here we will explore the difference between a discrete-time ver-
sion of the analog scheme of yore and a full-fledged digital communication
system such as the one we will study in detail in Chapter 12. Assume we
have a DVD-quality audio signal s[n]; the signal is finite-length and it cor-
responds to 30 minutes of playback time. Recall that “DVD-quality” means
that the audio is sampled at 48 KHz with 24 bits per sample and using 24 bits
means that practically we can neglect the SNR introduced by the quantiza-
tion. We want to send this signal over a telephone line knowing that the line
is bandlimited to 3840 Hz and that the impairment introduced by the trans-
mission can be modeled as a source of noise which brings down the SNR of
the received signal to 40 dB.

Consider the transmission scheme in Figure 11.24; since the D/A is fixed by
design (it is difficult to tune the frequency of a converter), we need to shrink
the spectrum of the audio signal using multirate processing. The (positive)
bandwidth of the DVD-audio signal is 24 KHz, while the telephone channel
is limited to 3840 Hz. We have that

24,000
3,840

6.25

and this is the factor by which we need to upsample; this can be achieved
with a combination of a 25-times upsampler followed by a 4-times down-
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multirate yin] y (1) iﬁ
s[n] — 48Khz D/A |——

converter (TX)

multirate R
—{ 48KhzA/D —>$[n]
converter (TX)

Figure 11.24 Transmission scheme for high-quality audio over a phone line.

sampler as in Figure 11.25 where Lyx(z) is a lowpass filter with cutoff fre-
quency 7/25 and gain Ly = 4/25. At the receiver the chain is inverted, with
an upsampler by four, followed by a lowpass filter with cutoff frequency /4
and gain Ly = 25/4 followed by a 25-times downsampler.

s[n] —@— Lrx(z) y[n]

Figure 11.25 A 6.25-times upsampler.

Because of the upsampling (which translates to a slowed-down signal) it will
take a little over three hours to send the audio (6.25 x 30 = 187.5 minutes).
The quality of the received signal is determined by the SNR of the telephone
line; the in-band noise is unaffected by the multirate processing and so the
final audio will have an overall SNR of 40 dBs.

Now let us compare the above solution to a fully digital communication
scheme. For a telephone line with the bandwidth and the SNR specified
above a commercially available digital modem can reliably achieve a through-
put of 32 kbits per second. The 30-minute DVD-audio file contains (30 x 60 x
48,000 x 24) bits. At 32 kbps, we will need approximately 18 hours to trans-
mit the signal! The upside, however, is that the received audio will indeed be
identical to the source, i.e. DVD-quality. Alternatively, we can sacrifice qual-
ity for time: if we quantize the original signal at 8 bits per sample, so that
the SRN is approximately 48 dB, the transmission time reduces to 6 hours.
Clearly, a modern audio transmission system would employ some advanced
data compression scheme to reduce the necessary throughput.

Example 11.2: Spectral cut and paste

By using a suitable combination of upsampling and downsampling we can
implement some nice tricks, such as swapping the upper and lower parts of
a signal’s spectrum. Consider a discrete-time signal x[n] with the spectrum
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as in Figure 11.26. If we process the signal with the network in Figure 11.27
where the filters L(z) and H(z) are half-band lowpass and highpass respec-
tively, the output spectrum will be swapped as in Figure 11.28.

T T T T T T T

-7 -3m/4 -2m/4 -/4 0 n/4 2m/4 3r/4 T

Figure 11.26 Original spectrum.

@

x[n] — y[n]
Figure 11.27 Spectral “swapper”.
- -31m/4 -21/4 -1/4 0 /4 21/4 31/4 T

Figure 11.28 “Swapped” spectrum.
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Further Reading

Historically, the topic of different sampling rates in signal processing was
first treated in detail in R. E. Crochiere and L. R. Rabiner’s, Multirate Digi-
tal Signal Processing (Prentice-Hall, 1983). With the advent of filter banks
and wavelets, more recent books give a detailed treatment as well, such as
P. P Vaidyanathan, Multirate Systems and Filter Banks (Prentice Hall, 1992),
and M. Vetterli and J. Kovacevic’s, Wavelets and Subband Coding (Prentice
Hall, 1995). Please note that the latter is now available in open access, see
http://www.waveletsandsubbandcoding.org.

Exercises

Exercise 11.1: Multirate identities. Prove the following two identities:

(a) Downsampling by 2 followed by filtering by H(z) is equivalent to fil-
tering by H(z?) followed by downsampling by 2.

(b) Filtering by H(z) followed by upsampling by 2 is equivalent to upsam-
pling by 2 followed by filtering by H(z?2).

Exercise 11.2: Multirate systems. Consider the input-output relations
of the following multirate systems. Remember that, technically, one cannot
talk of “transfer functions” in the case of multirate systems since sampling
rate changes are not time invariant. It may happen, though, that by carefully
designing the processing chain, this said relation does indeed implement a
transfer function.

(a) Find the overall transformation operated by the following system:

xtn ~(2DH () () )y

(b) In the system below, if H(z) = E¢(z?)+ z~'E1(z?) for some Eg;(z),
prove that Y(z) = X(z)Ey(2).

x[n]—@— H(z) —@—y[n]
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(c) Let H(z), F(z) and G(z) be filters satisfying

H(z)G(z)+ H(—z)G(—z) =2
H(z)F(z)+ H(—2z)F(—z)=0

Prove that one of the following systems is unity and the other zero:

x[n] G(z) I H(z) y[n]

—(2)— —()—
xtn) (20— Fe) | He) )

y[n]

Exercise 11.3: Multirate Signal Processing. Consider a discrete-time
signal x[n] with the following spectrum:

X(ei®)

/4 /2 37r‘/4 T

Now consider the following multirate processing scheme in which L(z) is an
ideal lowpass filter with cutoff frequency /2 and H(z) is an ideal highpass
filter with cutoff frequency 7/2:

|| L(z) || niln]
o — (12 ——(12)
= N N —

| H(2) ya2[n]

x[n]—

|| L(z) || ys[n]
@) ——(12 ) ——(74)
=l N\ N —

| H(2) ] yaln]

Plot the four spectra Y;(e/®), Y2(e/®), Y3(e/ %), Yy(e/®).
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Exercise 11.4: Digital processing of continuous-time signals. In
your grandmother’s attic you just found a treasure: a collection of super-
rare 78 rpm vinyl jazz records. The first thing you want to do is to transfer
the recordings to compact discs, so you can listen to them without wearing
out the originals. Your idea is obviously to play the record on a turntable and
use an A/D converter to convert the line-out signal into a discrete-time se-
quence, which you can then burn onto a CD. The problem is, you only have a
“modern” turntable, which plays records at 33 rpm. Since you’re a DSP wiz-
ard, you know you can just go ahead, play the 78 rpm record at 33 rpm and
sample the output of the turntable at 44.1 KHz. You can then manipulate
the signal in the discrete-time domain so that, when the signal is recorded
on a CD and played back, it will sound right.

Design a system which performs the above conversion. If you need to get
on the right track, consider the following:

e Call s(#) the continuous-time signal encoded on the 78 rpm vinyl (the
jazz music).

e Call x(¢) the continuous-time signal you obtain when you play the
record at 33 rpm on the modern turntable.

o Let x[n]=x(nT;), with T, =1/44,100.
Answer the following questions:
(a) Express x(t) in terms of s(t).

(b) Sketch the Fourier transform X(j2) when S(j2) is as in the follow-
ing figure. The highest nonzero frequency of S(j?) is Qmax = (27) -
16,000 Hz (old records have a smaller bandwidth than modern ones).

+ 1S( )
Dl B N
—max Qmax

(c) Design a system to convert x[n] into a sequence y[n] so that, when
you interpolate y[n] to a continuous-time signal y(¢) with interpola-
tion period T, you obtain Y(j2) =S(jQ).

(d) What if you had a turntable which plays records at 45 rpm? Would
your system be different? Would it be better?



Multirate Signal Processing 325

Exercise 11.5: Multirate is so usefull Consider the following block dia-

gram:
x[n]—»@— LP{n/M} —| 21 —@—y[n]

and show that this system implements a fractional delay (i.e. show that the
transfer function of the system is that of a pure delay, where the delay is not
necessarily an integer).

To see a practical use of this structure, consider now a data transmission
system over an analog channel. The transmitter builds a discrete-time sig-
nal s[n]; this is converted to an analog signal s.(#) via an interpolator with
period T, and finally s.(f) is transmitted over the channel. The signal takes
a finite amount of time to travel all the way to the receiver; say that the
transmission time over the channel is ¢y seconds: the received signal §.(¢)is
therefore just a delayed version of the transmitted signal,

Sc(t)=sc(t — to)

At the receiver, $.(t) is sampled with a sampler with period T; so that no
aliasing occurs to obtain $[n].

(a) Write out the Fourier Transform of §.(¢) as a function of S.(j).
(b) Write out the DTFT of the received signal sampled with rate T, §[n].

(c) Now we want to use the above multirate structure to compensate for
the transmission delay. Assume ty = 4.6 T;; determine the values for
M and L in the above block diagram so that §[n] = s[n — D], where
D € N has the smallest possible value (assume an ideal lowpass filter
in the multirate structure).

Exercise 11.6: Multirate filtering. Assume H(z) is an ideal lowpass filter
with cutoff frequency 7/10. Consider the system described by the following

block diagram:
x[n]—»@— H(z) —@—»y[n]

(a) Compute the transfer function of the system for M =2.

(b) Compute the transfer function of the system for M =5.
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(c) Compute the transfer function of the system for M =9.

(d) Compute the transfer function of the system for M = 10.

Exercise 11.7: Oversampled sequences. Consider a real-value se-
quence x[n] for which:

X(e/®)=0 <lw|<7

w3

One sample of x[n] may have been corrupted and we would like to approx-
imately or exactly recover it. We denote n, the time index of the corrupted
sample and x[n] the corresponding corrupted sequence.

(a) Specify a practical algorithm for exactly or approximately recovering
x[n] from x[n] if ny is known.

(b) What would you do if the value of n is not known?

(c) Now suppose we have k corrupted samples at either known or un-
known locations.

What is the condition that X(e/®) must satisfy to be able to exactly
recover x[n]? Specify the algorithm.



Chapter 12

Design of a Digital Communication
System

The power of digital signal processing can probably be best appreciated in
the enormous progresses which have been made in the field of telecom-
munications. These progresses stem from three main properties of digital
processing:

e The flexibility and power of discrete-time processing techniques,
which allow for the low-cost deployment of sophisticated and, more
importantly, adaptive equalization and filtering modules.

e The ease of integration between low-level digital processing and high-
level information-theoretical techniques which counteract transmis-
sion errors.

o The regenerability of a digital signal: in the necessary amplification
of analog signals after transmission, the noise floor is amplified as
well, thereby limiting the processing gain. Digital signals, on the other
hand, can be exactly regenerated under reasonable SNR conditions
(Fig. 1.10).

The fruits of such powerful communication systems are readily enjoyable
in everyday life and it suffices here to mention the fast ADSL connections
which take the power of high data rates into the home. ADSL is actually a
quantitative evolution of a humbler, yet extraordinarily useful device: the
voiceband modem. Voiceband modems, transmitting data at a rate of up to
56 Kbit/sec over standard telephone lines, are arguably the crown achieve-
ment of discrete-time signal processing in the late 90’s and are still the cor-
nerstone of most wired telecommunication devices such as laptops and fax
machines.
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In this Chapter, we explore the design and implementation of a voice-
band modem as a paradigmatic example of applied digital signal process-
ing. In principle, the development of a fully-functional device would require
the use of concepts which are beyond the scope of this book, such as adap-
tive signal processing and information theory. Yet we will see that, if we ne-
glect some of the impairments that are introduced by real-world telephone
lines, we are able to design a working system which will flawlessly modu-
lates and demodulates a data sequence.

12.1 The Communication Channel

A telecommunication system works by exploiting the propagation of elec-
tromagnetic waves in a medium. In the case of radio transmission, the
medium is the electromagnetic spectrum; in the case of land-line communi-
cations such as those in voiceband or ADSL modems, the medium is a cop-
per wire. In all cases, the properties of the medium determine two funda-
mental constraints around which any communication system is designed:

¢ Bandwith constraint: data transmission systems work best in the fre-
quency range over which the medium behaves linearly; over this pass-
band we can rely on the fact that a signal will be received with only
phase and amplitude distortions, and these are “good” types of dis-
tortion since they amount to a linear filter. Further limitations on the
available bandwidth can be imposed by law or by technical require-
ments and the transmitter must limit its spectral occupancy to the
prescribed frequency region.

o Power constraint: the power of a transmitted signal is inherently lim-
ited by various factors, including the range over which the medium
and the transmission circuitry behaves linearly. In many other cases,
such as in telephone or radio communications, the maximum power
is strictly regulated by law. Also, power could be limited by the ef-
fort to maximize the operating time of battery-powered mobile de-
vices. At the same time, all analog media are affected by noise, which
can come in the form of interference from neighboring transmission
bands (as in the case of radio channels) or of parasitic noise due to
electrical interference (as in the case of AC hum over audio lines). The
noise floor is the noise level which cannot be removed and must be
reckoned with in the transmission scheme. Power constraints limit
the achievable signal to noise ratio (SNR) with respect to the chan-
nel’s noise floor; in turn, the SNR determines the reliability of the data
transmission scheme.
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These constraints define a communication channel and the goal, in the de-
sign of a communication system, is to maximize the amount of information
which can be reliably transmitted across a given channel. In the design of a
digital communication system, the additional goal is to operate entirely in
the discrete-time domain up to the interface with the physical channel; this
means that:

¢ at the transmitter, the signal is synthesized, shaped and modulated
in the discrete-time domain and is converted to a continuous-time
signal just prior to transmission;

e at the receiver, the incoming signal is sampled from the channel and
demodulation, processing and decoding is performed in the digital
domain.

12.1.1 The AM Radio Channel

A classic example of a regulated electromagnetic channel is commercial ra-
dio. Bandwidth constraints in the case of the electromagnetic spectrum
are rigorously put in place because the spectrum is a scarce resource which
needs to be shared amongst a multitude of users (commercial radio, ama-
teur radio, cellular telephony, emergency services, military use, etc). Power
constraints on radio emissions are imposed for human safety concerns. The
AM band, for instance, extends from 530 kHz to 1700 kHz; each radio sta-
tion is allotted an 8 kHz frequency slot in this range. Suppose that a speech
signal x(t), obtained with a microphone, is to be transmitted over a slot ex-
tending from fiin = 650 kHz to fihax = 658 kHz. Human speech can be
modeled as a bandlimited signal with a frequency support of approximately
12 kHz; speech can, however, be filtered through a lowpass filter with cut-
off frequency 4 kHz with little loss of intelligibility so that its bandwidth can
be made to match the 8 kHz bandwidth of the AM channel. The filtered
signal now has a spectrum extending from —4 kHz to 4 kHz; multiplication
by a sinusoid at frequency f; = (fmax + fmin)/2 = 654 KHz shifts its sup-
port according to the continuous-time version of the modulation theorem:

if x(t) —— X(j ) then:
x(t)cos(Qet) oo % [X(jQ— jQ)+ X+ Q)] (12.1)

where Q. = 27 f,. This is, of course, a completely analog transmission sys-
tem, which is schematically displayed in Figure 12.1.
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cos(Q.t)

w— [ —0

Figure 12.1 A simple AM radio transmitter.

12.1.2 The Telephone Channel

The telephone channel is basically a copper wire connecting two users. Be-
cause of the enormous number of telephone posts in the world, only a rel-
atively small number of wires is used and the wires are switched between
users when a call is made. The telephone network (also known as POTS, an
acronym for “Plain Old Telephone System”) is represented schematically in
Figure 12.2. Each physical telephone is connected via a twisted pair (i.e. a
pair of plain copper wires) to the nearest central office (CO); there are a lot
of central offices in the network so that each telephone is usually no more
than a few kilometers away. Central offices are connected to each other via
the main lines in the network and the digits dialed by a caller are interpreted
by the CO as connection instruction to the CO associated to the called num-

ber.

iﬁ—» CO — co > iﬁ
Lo 8=

Figure 12.2 The Plain Old Telephone System (POTS).

To understand the limitations of the telephone channel we have to step
back to the old analog times when COs were made of electromechanical
switches and the voice signals traveling inside the network were boosted
with simple operational amplifiers. The first link of the chain, the twisted
pair to the central office, actually has a bandwidth of several MHz since it
is just a copper wire (this is the main technical fact behind ADSL, by the
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way). Telephone companies, however, used to introduce what are called
loading coils in the line to compensate for the attenuation introduced by
the capacitive effects of longer wires in the network. A side effect of these
coils was to turn the first link into a lowpass filter with a cutoff frequency of
approximately 4 kHz so that, in practice, the official passband of the tele-
phone channel is limited between fmi, =300 Hz and fiax = 3000 Hz, for a
total usable positive bandwidth W = 2700 Hz. While today most of the net-
work is actually digital, the official bandwidth remains in the order of 8 KHz
(i.e. a positive bandwidth of 4 KHz); this is so that many more conversations
can be multiplexed over the same cable or satellite link. The standard sam-
pling rate for a telephone channel is nowadays 8 KHz and the bandwidth
limitations are imposed only by the antialiasing filters at the CO, for a maxi-
mum bandwidth in excess of W =3400 Hz. The upper and lower ends of the
band are not usable due to possible great attenuations which may take place
in the transmission. In particular, telephone lines exhibit a sharp notch at
f =0 (also known as DC level) so that any transmission scheme will have to
use bandpass signals exclusively.

The telephone channel is power limited as well, of course, since tele-
phone companies are quite protective of their equipment. Generally, the
limit on signaling over a line is 0.2 V rms; the interesting figure however
is not the maximum signaling level but the overall signal-to-noise ratio of
the line (i.e. the amount of unavoidable noise on the line with respect to
the maximum signaling level). Nowadays, phone lines are extremely high-
quality: a SNR of at least 28 dB can be assumed in all cases and one of 32-
34 dB can be reasonably expected on a large percentage of individual con-
nections.

12.2 Modem Design: The Transmitter

Data transmission over a physical medium is by definition analog; modern
communication systems, however, place all of the processing in the digital
domain so that the only interface with the medium is the final D/A converter
at the end of the processing chain, following the signal processing paradigm
of Section 9.7.

12.2.1 Digital Modulation and the Bandwidth Constraint

In order to develop a digital communication system over the telephone
channel, we need to re-cast the problem in the discrete-time domain. To
this end, it is helpful to consider a very abstract view of the data transmitter,
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s[n]
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Figure 12.3 Abstract view of a digital transmitter.

as shown in Figure 12.3. Here, we neglect the details associated to the dig-
ital modulation process and concentrate on the digital-to-analog interface,
represented in the picture by the interpolator I(t); the input to the trans-
mitter is some generic binary data, represented as a bit stream. The band-
width constraints imposed by the channel can be represented graphically
as in Figure 12.4. In order to produce a signal which “sits” in the prescribed
frequency band, we need to use a D/A converter working at a frequency
F; > 2fmax- Once the interpolation frequency is chosen (and we will see
momentarily the criteria to do so), the requirements for the discrete-time
signal s[n] are set. The bandwidth requirements become simply

f min,max

F,

and they can be represented as in Figure 12.5 (in the figure, for instance, we
have chosen F; =2.28 fiax)-

Wmin,max = 27T

bandwidth constraint

f_j%

power constraint

0 f min fmax ES‘ F

Figure 12.4 Analog specifications (positive frequencies) for the transmitter.

We can now try to understand how to build a suitable s[#n] by looking
more in detail into the input side of the transmitter, as shown in Figure 12.6.
The input bitstream is first processed by a scrambler, whose purpose is to
randomize the data; clearly, it is a pseudo-randomization since this opera-
tion needs to be undone algorithmically at the receiver. Please note how the
implementation of the transmitter in the digital domain allows for a seam-
less integration between the transmission scheme and more abstract data
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Figure 12.5 Discrete-time specifications (positive frequencies) for F; =2.28 fiax.

manipulation algorithms such as randomizers. The randomized bitstream
could already be transmitted at this point; in this case, we would be imple-
menting a binary modulation scheme in which the signal s[n] varies be-
tween the two levels associated to a zero and a one, much in the fashion of
telegraphic communications of yore. Digital communication devices, how-
ever, allow for a much more efficient utilization of the available bandwidth
via the implementation of multilevel signaling. With this strategy, the bit-
stream is segmented in consecutive groups of M bits and these bits select
one of 2M possible signaling values; the set of all possible signaling values
is called the alphabet of the transmission scheme and the algorithm which
associates a group of M bits to an alphabet symbol is called the mapper. We
will discuss practical alphabets momentarily; however, it is important to re-
mark that the series of symbols can be complex so that all the signals in the
processing chain up to the final D/A converter are complex signals.

..01100

01010... —>| Scrambler Mapper —J
L Modulator I(t) s(t)

s[n]

Figure 12.6 Data stream processing detail.

Spectral Properties of the Symbol Sequence. The mapper produces
a sequence of symbols a[n] which is the actual discrete-time signal which
we need to transmit. In order to appreciate the spectral properties of this se-
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quence consider that, if the initial binary bitstream is a maximum-inform-
ation sequence (i.e. if the distribution of zeros and ones looks random and
“fifty-fifty”), and with the scrambler appropriately randomizing the input
bitstream, the sequence of symbols a[n] can be modeled as a stochastic
i.i.d. process distributed over the alphabet. Under these circumstances, the
power spectral density of the random signal a[n] is simply

Py(el®)= o

where 04 depends on the design of the alphabet and on its distribution.

Choice of Interpolation Rate. We are now ready to determine a suit-
able rate F; for the final interpolator. The signal a[r] is a baseband, fullband
signal in the sense that it is centered around zero and its power spectral den-
sity is nonzero over the entire [—7, 7] interval. If interpolated at F;, such a
signal gives rise to an analog signal with nonzero spectral power over the
entire [—F;/2, F; /2] interval (and, in particular, nonzero power at DC level).
In order to fulfill the channel’s constraints, we need to produce a signal with
a bandwidth of w,, = Wmax — Wmin centered around w, = £(wWmax + ©min)/2.
The “trick” is to upsample (and interpolate) the sequence a[n], in order to
narrow its spectral support.? Assuming ideal discrete-time interpolators,
an upsampling factor of 2, for instance, produces a half-band signal; an up-
sampling factor of 3 produces a signal with a support spanning one third of
the total band, and so on. In the general case, we need to choose an upsam-
pling factor K so that:

K — w
Maximum efficiency occurs when the available bandwidth is entirely occu-
pied by the signal, i.e. when K =27/w,,. In terms of the analog bandwidth
requirements, this translates to

Jw

where f,, = fmax— fmin i the effective positive bandwidth of the transmitted
signal; since K must be an integer, the previous condition implies that we
must choose an interpolation frequency which is a multiple of the positive

K (12.2)

(DA rigorous mathematical analysis of multirate processing of stochastic signals turns out
to be rather delicate and beyond the scope of this book; the same holds for the effects of
modulation, which will appear later on. Whenever in doubt, we may simply visualize the
involved signals as a deterministic realization whose spectral shape mimics the power
spectral density of their generating stochastic process.
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passband width f,,. The two criteria which must be fulfilled for optimal
signaling are therefore:

{Fszzfmax

(12.3)
F,=Kf, KeN

..01100 an] @

1 M
01010... Scrambler apper

b[n] c[n] s[n]
L G(z) (=) Re (1) ——s(1)
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Figure 12.7 Complete digital transmitter.

The Baseband Signal. The upsampling by K operation, used to nar-
row the spectral occupancy of the symbol sequence to the prescribed band-
width, must be followed by a lowpass filter, to remove the multiple copies of
the upsampled spectrum; this is achieved by a lowpass filter which, in dig-
ital communication parlance, is known as the shaper since it determines
the time domain shape of the transmitted symbols. We know from Sec-
tion 11.2.1 that, ideally, we should use a sinc filter to perfectly remove all
repeated copies. Since this is clearly not possible, let us now examine the
properties that a practical discrete-time interpolator should possess in the
context of data communications. The baseband signal b[n] can be expressed
as

bln)=>axylm]gln—m]

where axy[n] is the upsampled symbol sequence and g[n] is the lowpass
filter’s impulse response. Since a xy[n] =0 for n not a multiple of K, we can
state that:

bln]= alilgln—iK] (12.4)

It is reasonable to impose that, at multiples of K, the upsampled sequence
b[n] takes on the exact symbol value, i.e. b[m K] = a[m]; this translates to
the following requirement for the lowpass filter:

1 m=0

g[mK]z{O m£0 (12.5)



336 Modem Design: The Transmitter

This is nothing but the classical interpolation property which we saw in Sec-
tion 9.4.1. For realizable filters, this condition implies that the minimum fre-
quency support of G(e/®) cannot be smaller than [-7/K,7t/K].?) In other
words, there will always be a (controllable) amount of frequency leakage out-
side of a prescribed band with respect to an ideal filter.

To exactly fullfill (12.5), we need to use an FIR lowpass filter; FIR ap-
proximations to a sinc filter are, however, very poor, since the impulse re-
sponse of the sinc decays very slowly. A much friendlier lowpass charac-
teristic which possesses the interpolation property and allows for a precise
quantification of frequency leakage, is the raised cosine. A raised cosine with
nominal bandwidth w,, (and therefore with nominal cutoff wj, = w,,/2) is
defined over the positive frequency axis as

1 if0<w<(1-pB)wy
. 0 f(l+pflwp<w<n
Gle!)=11 1 [ @=(1=Flo (12.6)
22 2B wy

if(1-Blop<w<(1+p)wp

and is symmetric around the origin. The parameter §, with 0 < 8 < 1, ex-
actly defines the amount of frequency leakage as a percentage of the pass-
band. The closer f is to one, the sharper the magnitude response; a set of
frequency responses for wj = 71/2 and various values of 8 are shown in Fig-
ure 12.8. The raised cosine is still an ideal filter but it can be shown that its

WY

-7

T

Figure 12.8 Frequency responses of a half-band raised-cosine filter for increasing
values of : from black to light gray,  =0.1, 8 =0.2, 8 =0.4, 8 =0.9.

@A simple proof of this fact can be outlined using multirate signal processing. Assume
the spectrum G(e/®) is nonzero only over [—wy, @], for w, < 7/K; g[n] can therefore
be subsampled by at least a factor of K without aliasing, and the support of the resulting
spectrum is going to be [-Kwy,, Kw;], with Kw;, < w. However, g[Kn] = 6 [n], whose
spectral supportis [—7, 7t].



Design of a Digital Communication System 337

impulse response decays as 1/n% and, therefore, good FIR approximations
can be obtained with a reasonable amount of taps using a specialized ver-
sion of Parks-McClellan algorithm. The number of taps needed to achieve a
good frequency response obviously increases as 8 approaches one; in most
practical applications, however, it rarely exceeds 50.

The Bandpass Signal. The filtered signal b[n] = g[n]*axy[n] is now a
baseband signal with total bandwidth w,,. In order to shift the signal into
the allotted frequency band, we need to modulate® it with a sinusoidal car-
rier to obtain a complex bandpass signal:

c[n]=Db[n]el@"
where the modulation frequency is the center-band frequency:

_ @Wmin + Wmax
We = —2

Note that the spectral support of the modulated signal is just the positive
interval [wmin, @Wmax]; @ complex signal with such a one-sided spectral occu-
pancy is called an analytic signal. The signal which is fed to the D/A con-
verter is simply the real part of the complex bandpass signal:

s[n]=Re{c[n]} (12.7)

If the baseband signal b[n] is real, then (12.7) is equivalent to a standard
cosine modulation as in (12.1); in the case of a complex b[#n] (as in our case),
the bandpass signal is the combination of a cosine and a sine modulation,
which we will examine in more detail later. The spectral characteristics of
the signals involved in the creation of s[n] are shown in Figure 12.9.

Baud Rate vs Bit Rate. The baud rate of a communication system is the
number of symbols which can be transmitted in one second. Considering
that the interpolator works at F; samples per second and that, because of
upsampling, there are exactly K samples per symbol in the signal s[n], the
baud rate of the system is

Fs
B=—="fu (12.8)
where we have assumed that the shaper G(z) is an ideal lowpass. As a gen-

eral rule, the baud rate is always smaller or equal to the positive passband
of the channel. Moreover, if we follow the normal processing order, we can

@ See footnote (1).
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Figure 12.9 Construction of the modulated signal: PSD of the symbol sequence
a[n] (top panel); PSD of the upsampled and shaped signal b[n] (middle panel);
PSD of the real modulated signal s[n] (bottom panel). The channel’s bandwidth
requirements are indicated by the dashed areas.

equivalently say that a symbol sequence generated at B symbols per second
gives rise to a modulated signal whose positive passband is no smaller than
B Hz. The effective bandwidth f,, depends on the modulation scheme and,
especially, on the frequency leakage introduced by the shaper.
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The total bit rate of a transmission system, on the other hand, is at most
the baud rate times the log in base 2 of the number of symbols in the alpha-
bet; for a mapper which operates on M bits per symbol, the overall bitrate
is

R=MB (12.9)

A Design Example. As a practical example, consider the case of a tele-
phone line for which fmin = 450 Hz and fiax = 3150 Hz (we will consider
the power constraints later). The baud rate can be at most 2700 symbols per
second, since f,; = fmax — fmin = 2700 Hz. We choose a factor = 0.125 for
the raised cosine shaper and, to compensate for the bandwidth expansion,
we deliberately reduce the actual baud rate to B=2700/(1+ )= 2400 sym-
bols per second, which leaves the effective positive bandwidth equal to f,.
The criteria which the interpolation frequency must fulfill are therefore the
following:

F; > 2 finax = 6300
F,=KB=2400K KeN

The first solution is for K = 3 and therefore F; = 7200. With this inter-
polation frequency, the effective bandwidth of the discrete-time signal is
wy = 27(2700/7200) = 0.757 and the carrier frequency for the bandpass
signal is w, = 27(450 4+ 3150)/(2F;) = 7r/2. In order to determine the maxi-
mum attainable bitrate of this system, we need to address the second major
constraint which affects the design of the transmitter, i.e. the power con-
straint.

12.2.2 Signaling Alphabets and the Power Constraint

The purpose of the mapper is to associate to each group of M input bits a
value a from a given alphabet .</. We assume that the mapper includes a
multiplicative factor Gy which can be used to set the final gain of the gen-
erated signal, so that we don’'t need to concern ourselves with the absolute
values of the symbols in the alphabet; the symbol sequence is therefore:

a[n] =Gyaln], a[n] .o/
and, in general, the values a are set at integer coordinates out of conve-

nience.

Transmitted Power. Under the above assumption of an i.i.d. uniformly
distributed binary input sequence, each group of M bits is equally probable;
since we consider only memoryless mappers, i.e. mappers in which no de-
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pendency between symbols is introduced, the mapper acts as the source of
arandom process a[n] which is also i.i.d. The power of the output sequence
can be expressed as

afl:E|a[n]}2

=Gy la|*pa(@) (12.10)
ac.o/
=Gjo? (12.11)

where p,(a) is the probability assigned by the mapper to symbol a € .«/;
the distribution over the alphabet .</ is one of the design parameters of the
mapper, and is not necessarily uniform. The variance o2 is the intrinsic
power of the alphabet and it depends on the alphabet size (it increases ex-
ponentially with M), on the alphabet structure, and on the probability dis-
tribution of the symbols in the alphabet. Note that, in order to avoid wast-
ing transmission energy, communication systems are designed so that the
sequence generated by the mapper is balanced, i.e. its DC value is zero:

Elaln]]= ) apu(a)=0
ac.q/
Using (8.25), the power of the transmitted signal, after upsampling and mod-
ulation, is

2_ 1 ol jen|2 2 2

o= 5 |G(e!*)|"Gi o, (12.12)
Wmin

The shaper is designed so that its overall energy over the passband is G? =

27 and we can express this as follows:

oi=Gjo? (12.13)

In order to respect the power constraint, we have to choose a value for Gy
and design an alphabet .7 so that:

02 < Poax (12.14)

where Ppax is the maximum transmission power allowed on the channel.
The goal of a data transmission system is to maximize the reliable through-
put but, unfortunately, in this respect the parameters 02 and G, act upon
conflicting priorities. If we use (12.9) and boost the transmitter’s bitrate by
increasing M, then o2 grows and we must necessarily reduce the gain G
to fulfill the power constraint; but, in so doing, we impair the reliability of
the transmission. To understand why that is, we must leap ahead and con-
sider both a practical alphabet and the mechanics of symbol decoding at the
transmitter.
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QAM. The simplest mapping strategies are one-to-one correspondences
between binary values and signal values: note that in these cases the sym-
bol sequence is uniformly distributed with p,(a) =2~ for all € .. For
example, we can assign to each group of M bits (by,...,by—1) the signed bi-
nary number bob, by --- by;—1 which is a value between —2-1 and 2M-1 (b,
is the sign bit). This signaling scheme is called pulse amplitude modula-
tion (PAM) since the amplitude of each transmitted symbol is directly deter-
mined by the binary input value. The PAM alphabet is clearly balanced and
the inherent power of the mapper’s output is readily computed as®

2M71

2M(2M 4 3)+2
2 -M 2

g,= 2 [ A e —
=2 2

Now, a pulse-amplitude modulated signal prior to modulation is a base-
band signal with positive bandwidth of, say, w¢ (see Figure 12.9, middle
panel); therefore, the foral spectral support of the baseband PAM signal is
2wy. After modulation, the total spectral support of the signal actually dou-
bles (Fig. 12.9, bottom panel); there is, therefore, some sort of redundancy
in the modulated signal which causes an underutilization of the available
bandwidth. The original spectral efficiency can be regained with a signaling
scheme called quadrature amplitude modulation (QAM); in QAM the sym-
bols in the alphabet are complex quantities, so that tfworeal values are trans-
mitted simultaneously at each symbol interval. Consider a complex symbol
sequence

a[n]=Go(as[nl+jaqlnl) =aln]+ jaqln]
Since the shaper is a real-valued filter, we have that:

b[n]= (arxu+g[nl) +j(aqxu*glnl) =biln]+ jbq(n]
so that, finally, (12.7) becomes:

s[n]=Re{b[n] ei®n}

=br[n]cos(wn)—bg[n]sin(w.n)

In other words, a QAM signal is simply the linear combination of two pulse-
amplitude modulated signals: a cosine carrier modulated by the real part of
the symbol sequence and a sine carrier modulated by the imaginary part of
the symbol sequence. The sine and cosine carriers are orthogonal signals,
so that b;[n] and bg[n] can be exactly separated at the receiver via a sub-
space projection operation, as we will see in detail later. The subscripts I

@A useful formula, here and in the following, is Z§=1 n>=N(N+1)2N +1)/6.
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and Q derive from the historical names for the cosine carrier (the in-phase
carrier) and the sine carrier which is the quadrature (i.e. the orthogonal car-
rier). Using complex symbols for the description of the internal signals in
the transmitter is an abstraction which simplifies the overall notation and
highlights the usefulness of complex discrete-time signal models.
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Figure 12.10 16-point QAM constellations (M =4).

Constellations. The 2™ symbols in the alphabet can be represented as
points in the complex plane and the geometrical arrangement of all such
points is called the signaling constellation. The simplest constellations are
upright square lattices with points on the odd integer coordinates; for M
even, the 2M constellation points a, form a square shape with 2M/2 points
per side:

apk=02h—-1)+j2k-1), —2M/2=1 o fe < 2M/2-1
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Such square constellations are called regular and a detailed example is
shown in Figure 12.10 for M = 4; other examples for M = 2,6,8 are shown
in Figure 12.11. The nominal power associated to a regular, uniformly dis-
tributed constellation on the square lattice can be computed as the second
moment of the points; exploiting the fourfold symmetry, we have

9M/2-1 9M/2-1
oh=4 Y > 2M[(2h-1)"+(2k—1)’]
h=1 k=1

_ §(2M _1) (12.15)

Square-lattice constellations exist also for alphabet sizes which are not per-
fect squares and examples are shown in Figure 12.12 for M = 3 (8-point con-
stellation) and M =5 (32-point). Alternatively, constellations can be defined
on other types of lattices, either irregular or regular; Figure 12.13 shows an
alternative example of an 8-point constellation defined on an irregular grid
and a 19-point constellation defined over a regular hexagonal lattice. We
will see later how to exploit the constellation’s geometry to increase perfor-
mance.

5
5

Im

Re = ececccececcc]eccccccse Re

Re

Figure 12.11 4-, 64- and 256-point QAM constellations (M bits/symbol for M =2,
M =6, M = 8) respectively.
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Figure 12.12 8- and 32-point square-lattice constellations.
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Figure 12.13 More exotic constellations: irregular low-power 8-point constellation
(left panel) in which the outer point are at a distance of 1+ /3 from the origin ;
regular 19-point hexagonal-lattice constellation (right panel).

Transmission Reliability. Let us assume that the receiver has eliminated
all the “fixable” distortions introduced by the channel so that an “almost
exact” copy of the symbol sequence is available for decoding; call this se-
quence d[n]. What no receiver can do, however, is eliminate all the additive
noise introduced by the channel so that:

aln]=aln]+n(n] (12.16)

where n[n] is a complex white Gaussian noise term. It will be clear later why
the internal mechanics of the receiver make it easier to consider a complex
representation for the noise; again, such complex representation is a conve-
nient abstraction which greatly simplifies the mathematical analysis of the
decoding process. The real-valued zero-mean Gaussian noise introduced by
the channel, whose variance is o3, is transformed by the receiver into com-
plex Gaussian noise whose real and imaginary parts are independent zero-
mean Gaussian variables with variance o'3/2. Each complex noise sample
n[n] is distributed according to

lzl

1 2
fi n(z) = ?._(2) e %
The magnitude of the noise samples introduces a shift in the complex
plane for the demodulated symbols é[rn] with respect to the originally trans-
mitted symbols; if this displacement is too big, a decoding error takes place.
In order to quantify the effects of the noise we have to look more in detail
at the way the transmitted sequence is retrieved at the receiver. A bound
on the probability of error can be obtained analytically if we consider a sim-
ple QAM decoding technique called hard slicing. In hard slicing, a value
aln] is associated to the most probable symbol a € ./ by choosing the al-
phabet symbol at the minimum Euclidean distance (taking the gain Gy into
account):

(12.17)
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72{a[nl} =argg£2{}c‘z[n] — G0a|2}

The hard slicer partitions the complex plane into decision regions centered
on alphabet symbols; all the received values which fall into the decision re-
gion centered on ¢ are mapped back onto a. Decision regions for a 16-point
constellation, together with examples of correct and incorrect hard slicing
are represented in Figure 12.14: when the error sample n[n] moves the re-
ceived symbol outside of the right decision region, we have a decoding er-
ror. For square-lattice constellations, this happens when either the real or
the imaginary part of the noise sample is larger than the minimum distance
between a symbol and the closest decision region boundary. Said distance
is dmin = Gy, as can be easily seen from Figure 12.10, and therefore the prob-
ability of error at the receiver is

Pe=1 —P[(Re{n[n]} < Go) A (Im{n[n]} < GO)]

=1—f fh(z)dz
D
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Figure 12.14 Decoding of noisy symbols: transmitted symbol is black dot, received
value is the star. Correct decoding (left) and decoding error (right).

where f,(x) is the pdf of the additive complex noise and D is a square on
the complex plane centered at the origin and 2d,;;, wide. We can obtain
a closed-form expression for the probability of error if we approximate the
decision region D by the inscribed circle of radius dmin (Fig. 12.15), so:

pezl_f fn(z)dz
|z]<Go

27 G() _
zl_f dgf L,
0 o 7Oy

2

SR
S

(12.18)
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where we have used (12.17) and the change of variable z = p e/?. The prob-
ability of error decreases exponentially with the gain and, therefore, with the
power of the transmitter.

/

n

o o o

Figure 12.15 Decision region and its circular approximation.

The concept of “reliability” is quantified by the probability of error that
we are willing to tolerate; note that this probability can never be zero, but
it can be made arbitrarily low — values on the order of p, = 1075 are usually
taken as a reference. Assume that the transmitter transmits at the maxi-
mum permissible power so that the SNR on the channel is maximized. Un-

der these conditions it is

2 2

o o
SNR= - = Gg—“
o? o?
0 0

and from (12.18) we have
SNR = —In(p.)o2 (12.19)

For a regular square-lattice constellation we can use (12.15) to determine
the maximum number of bits per symbol which can be transmitted at the
given reliability figure:

3 SNR )

— 5 m (1220)

M =log, (1



Design of a Digital Communication System 347

and this is how the power constraint ultimately affects the maximum achiev-
able bitrate. Note that the above derivation has been carried out with very
specific hypotheses on both the signaling alphabet and on the decoding al-
gorithm (the hard slicing); the upper bound on the achievable rate on the
channel is actually a classic result of information theory and is known un-
der the name of Shannon’s capacity formula. Shannon’s formula reads

S
= Bl 1+—
Cc ng(‘i‘N)

where C is the absolute maximum capacity in bits per second, B is the avail-
able bandwidth in Hertz and S/N is the signal to noise ratio.

Design Example Revisited. Let us resume the example on page 341 by
assuming that the power constraint on the telephone line limits the max-
imum achievable SNR to 22 dB. If the acceptable bit error probability is
pe = 1076, Equation (12.20) gives us a maximum integer value of M = 4 bits
per symbol. We can therefore use a regular 16-point square constellation;
recall we had designed a system with a baud rate of 2400 symbols per sec-
ond and therefore the final reliable bitrate is R = 9600 bits per second. This
is actually one of the operating modes of the V.32 ITU-T modem standard.®

12.3 Modem Design: the Receiver

The analog signal s(t) created at the transmitter is sent over the telephone
channel and arrives at the receiver as a distorted and noise-corrupted signal
$(t). Again, since we are designing a purely digital communication system,
the receiver’s input interface is an A/D converter which, for simplicity, we
assume, is operating at the same frequency F; as the transmitter’s D/A con-
verter. The receiver tries to undo the impairments introduced by the chan-
nel and to demodulate the received signal; its output is a binary sequence
which, in the absence of decoding errors, is identical to the sequence in-
jected into the transmitter; an abstract view of the receiver is shown in Fig-
ure 12.16.

$[n]
§(0) > RX ..01100
01010...

F

Figure 12.16 Abstract view of a digital receiver.

GITU-T is the Standardization Bureau of the International Telecommunication Union.
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12.3.1 Hilbert Demodulation

Let us assume for the time being that transmitter and receiver are connected
back-to-back so that we can neglect the effects of the channel; in this case
5(t) = s(t) and, after the A/D module, §[n] = s[n]. Demodulation of the
incoming signal to a binary data stream is achieved according to the block
diagram in Figure 12.17 where all the steps in the modulation process are
undone, one by one.

J .
H(z) ejwen
§n] ¢ln /L b(n]
$) —- U \J, J
an]
Slicer Descrambler ~01100
01010...

Figure 12.17 Complete digital receiver.

The first operation is retrieving the complex bandpass signal ¢[#] from
the real signal §[n]. An efficient way to perform this operation is by ex-
ploiting the fact that the original c[n] is an analytic signal and, therefore,
its imaginary part is completely determined by its real part. To see this,
consider a complex analytic signal x[n], i.e. a complex sequence for which
X(e/®) = 0 over the [—r,0] interval (with the usual 27t-periodicity, obvi-
ously). We can split x[n] into real and imaginary parts:

x[n]=x,[n]+jx;[n]

so that we can write:

x[n]+x*[n]
xln]==————
x[n] — x*[n]
xi[n]= 2

In the frequency domain, these relations translate to (see (4.46)):

[X(e/®)+ X*(e=i)]
2

[X(e/®)— X*(e=i®)]
2j

X, (e/®)= (12.21)

Xi(e/®)= (12.22)
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Figure 12.18 Magnitude spectrum of an analytic signal x[n]. |X(e/®)| (left) and
X*(e*f“’)| (right).

Since x[n] is analytic, by definition X(e/®)=0 for —n < w < 0, X*(e/©)=0
for 0 < w < 7 and X(e/ ) does not overlap with X*(e~/¢) (Fig. 12.18). We can
therefore use (12.21) to write:

X(el®) = (12.23)

2X;(ei®) for0<w<m
for—m<w<0

Now, x,[n] is areal sequence and therefore its Fourier transform is conjugate-
symmetric, i.e. X (e/®) = X%(e~J/¢); as a consequence

X*e @)= 0 for0sw=m (12.24)
2X,(el®) for—m<w<0

By using (12.23) and (12.24) in (12.22) we finally obtain:

. —iX.(ef®) for0<w<
xi(ef)={"’ ’(e.) ori=@=T (12.25)
+jX,(el®) for—nm<w<0

which is the product of X, (e/«) with the frequency response of a Hilbert
filter (Sect. 5.6). In the time domain this means that the imaginary part of an
analytic signal can be retrieved from the real part only via the convolution:

xi[n] = hln]*x,[n]

At the demodulator, §[n] = s[n] is nothing but the real part of c[n] and
therefore the analytic bandpass signal is simply

cln] = §[n]+ j (h[n]*$[n))

In practice, the Hilbert filter is approximated with a causal, 2L+ 1-tap type
III FIR, so that the structure used in demodulation is that of Figure 12.19.



350 Modem Design: the Receiver

H(z)

$[n] — ¢[n—1]

z—L

Figure 12.19 Retrieving the complex baseband signal with an FIR Hilbert filter ap-
proximation.

The delay in the bottom branch compensates for the delay introduced by
the causal filter and puts the real and derived imaginary part back in sync to
obtain:

é[n]=3§[n— L]+ j(h[n]*3[n])

Once the analytic bandpass signal is reconstructed, it can be brought
back to baseband via a complex demodulation with a carrier with frequency
—we:

b[n]=é[n]e T@er
Because of the interpolation property of the pulse shaper, the sequence of
complex symbols can be retrieved by a simple downsampling-by-K opera-
tion:

da[n]=b[nK]
Finally, the slicer (which we saw in Section 12.2.2) associates a group of M

bits to each received symbol and the descrambler reconstructs the original
binary stream.

12.3.2 The Effects of the Channel

If we now abandon the convenient back-to-back scenario, we have to deal
with the impairments introduced by the channel and by the signal process-
ing hardware. The telephone channels affects the received signal in three
fundamental ways:

¢ it adds noise to the signal so that, even in the best case, the signal-to-
noise ratio of the received signal cannot exceed a maximum limit;

o it distorts the signal, acting as a linear filter;

e it delays the signal, according to the propagation time from transmit-
ter to receiver.
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Distortion and delay are obviously both linear transformations and, as such,
their description could be lumped together; still, the techniques which deal
with distortion and delay are different, so that the two are customarily kept
separate. Furthermore, the physical implementation of the devices intro-
duces an unavoidable lack of absolute synchronization between transmit-
ter and receiver, since each of them runs on an independent internal clock.
Adaptive synchronization becomes a necessity in all real-world devices, and
will be described in the next Section.

Noise. The effects of noise have already been described in Section 12.2.2
and can be summed up visually by the plots in Figure 12.20 in each of which
successive values of d[n] are superimposed on the same axes. The analog
noise is transformed into discrete-time noise by the sampler and, as such,
it leaks through the demodulation chain to the reconstructed symbols se-
quence d[n]; as the noise level increases (or, equivalently, as the SNR de-
creases) the shape of the received constellation progressively loses its tight-
ness around the nominal alphabet values. As symbols begin to cross the
boundaries of the decision regions, more and more decoding errors, take
place.
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Figure 12.20 Noisy constellation for decreasing SNR.

Equalization. We saw previously that the passband of a communication
channel is determined by the frequency region over which the channel in-
troduces only linear types of distortion. The channel can therefore be mod-
eled as a continuous-time linear filter D.(j2) whose frequency response is
unknown (and potentially time-varying). The received signal (neglecting
noise) is therefore S(j Q) = D.(j)S(jQ) and, after the sampler, we have

S(e’®)=D(e’*)S(e*)

where D(e/) represents the combined effect of the original channel and of
the anti-aliasing filter at the A/D converter. To counteract the channel dis-
tortion, the receiver includes an adaptive equalizer E(z) right after the A/D
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converter; this is an FIR filter which is modified on the fly so that E(z) ~
1/D(z). While adaptive filter theory is beyond the scope of this book, the
intuition behind adaptive equalization is shown in Figure 12.21. In fact, the
demodulator contains an exact copy of the modulator as well; if we assume
that the symbols produced by the slicer are error-free, a perfect copy of the
transmitted signal s[n] can be generated locally at the receiver. The differ-
ence between the equalized signal and the reconstructed original signal is
used to adapt the taps of the equalizer so that:

d[n]=S5§.[n]—s[n]—0

Clearly, in the absence of a good initial estimate for D(e/¢), the sliced val-
ues d[n] are nothing like the original sequence; this is obviated by having
the transmitter send a pre-established training sequence which is known in
advance at the receiver. The training sequence, together with other syn-
chronization signals, is sent each time a connection is established between
transmitter and receiver and is part of the modem’s handshaking protocol.
By using a training sequence, E(z) can quickly converge to an approxima-
tion of 1/D(z) which is good enough for the receiver to start decoding sym-
bols correctly and use them in driving further adaptation.

$e[n] aln]
: Demod Slicer

sinl—| E(z)

s[n]
W) Modulator

Figure 12.21 Adaptive equalization: based on the estimated symbols the receiver
can synthesize the perfect desired equalizer output and use the difference to drive
the adaptation.

Delay. The continuous-time signal arriving at the receiver can be modeled
as

S(t)=(s*xv)(t —ta)+n(t) (12.26)

where v(t) is the continuous-time impulse response of the channel, 1(¢) is
the continuous-time noise process and ¢, is the propagation delay, i.e. the
time it takes for the signal to travel from transmitter to receiver. After the
sampler, the discrete-time signal to be demodulated is §[n] = §(nT;); if we
neglect the noise and distortion, we can write

Sinl=s(nTs—tg)=s(n—ny)Ts—1T;) (12.27)
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where we have split the delay as t; = (ng + 7)Ts with ny € Nand |7] < 1/2.
The term n4 is called the bulk delay and it can be estimated easily in a full-
duplex system by the following handshaking procedure:

1. System A sends an impulse to system B at time n = 0; the impulse
appears on the channel after a known processing delay 7,; seconds;
let the (unknown) channel propagation delay be t; seconds.

2. System B receives the impulse and sends an impulse back to A; the
processing time f,> (decoding of the impulse and generation of re-
sponse) is known by design.

3. The response impulse is received by system A after ¢; seconds (prop-
agation delay is symmetric) and detected after a processing delay of
tp3 seconds.

In the end, the total round-trip delay measured by system A is
t=2tq+tp1+ tpo+lps =214+ 1)

since t,, is known exactly in terms of the number of samples, 74 can be esti-
mated to within a sample. The bulk delay is easily dealt with at the receiver,
since it translated to a simple z7"¢ component in the channel’s response.
The fractional delay, on the other hand, is a more delicate entity which we
will need to tackle with specialized machinery.

12.4 Adaptive Synchronization

In order for the receiver to properly decode the data, the discrete-time
signals inside the receiver must be synchronous with the discrete-time sig-
nals generated by the transmitter. In the back-to-back operation, we could
neglect synchronization problems since we assumed §[n] = s[n]. In reality,
we will need to compensate for the propagation delay and for possible clock
differences between the D/A at the transmitter and the A/D at the receiver,
both in terms of time offsets and in terms of frequency offsets.

12.4.1 Carrier Recovery

Carrier recovery is the modem functionality by which any phase offset be-
tween carriers is estimated and compensated for. Phase offsets between the
transmitter’s and receiver’s carriers are due to the propagation delay and to
the general lack of a reference clock between the two devices. Assume that



354 Adaptive Synchronization

the oscillator in the receiver has a phase offset of 8 with respect to the trans-
mitter; when we retrieve the baseband signal b[n] from ¢[n] we have

B[n] =¢[n] e J(wen—0) — cln] e~ J(wen=0) — b[n] el?

where we have neglected both distortion and noise and assumed ¢é[n] =
c[n]. Such a phase offset translates to a rotation of the constellation points
in the complex plane since, after downsampling, we have d[n] = a[n]e/?.
Visually, the received constellation looks like in Figure 12.22, where 6 =
/20 =9°. If we look at the decision regions plotted in Figure 12.22, it is clear
that in the rotated constellation some points are shifted closer to the deci-
sion boundaries; for these, a smaller amount of noise is sufficient to cause
slicing errors. An even worse situation happens when the receiver’s carrier
frequency is slightly different than the transmitter’s carrier frequency; in this
case the phase offset changes over time and the points in the constellation
start to rotate with an angular speed equal to the difference between fre-
quencies. In both cases, data transmission becomes highly unreliable: car-
rier recovery is then a fundamental part of modem design.
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Figure 12.22 Rational effect of a phase offset on the received symbols.

The most common technique for QAM carrier recovery over well-
behaved channels is a decision directed loop; just as in the case of the adap-
tive equalizer, this works when the overall SNR is sufficiently high and the
distortion is mild so that the slicer’s output is an almost error-free sequence
of symbols. Consider a system with a phase offset of 6; in Figure 12.23 the
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Im

Re

Figure 12.23 Estimation of the phase offset.

rotated symbol & (indicated by a star) is sufficiently close to the transmitted
value a (indicated by a dot) to be decoded correctly. In the z plane, con-
sider the two vectors @; and a5, from the origin to & and « respectively; the
magnitude of their vector product can be expressed as

|@1 x @| =Re{a}Im{a} — Im{a} Re{a} (12.28)
Moreover, the angle between the vectors is 8 and it can be computed as

|1 x @| =|a: ||| sin(0) (12.29)
We can therefore obtain an estimate for the phase offset:

sin(0) = Re{a}Im{a} —Im{a} Refa} (12.30)
|1 |1d>| '

For small angles, we can invoke the approximation sin(f) ~ 6 and obtain a
quick estimate of the phase offset. In digital systems, oscillators are realized
using the algorithm we saw in Section 2.1.3; it is easy to modify such a rou-
tine to include a time-varying corrective term derived from the estimate of
above so that the resulting phase offset is close to zero. This works also in the
case of a slight frequency offset, with 8 converging in this case to a nonzero
constant. The carrier recovery block diagram is shown in Figure 12.24.

This decision-directed feedback method is almost always able to “lock”
the constellation in place; due to the fourfold symmetry of regular square
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constellations, however, there is no guarantee that the final orientation of
the locked pattern be the same as the original. This difficulty is overcome
by a mapping technique called differential encoding; in differential encod-
ing the first two bits of each symbol actually encode the quadrant offset of
the symbol with respect to the previous one, while the remaining bits indi-
cate the actual point within the quadrant. In so doing, the encoded symbol
sequence becomes independent of the constellation’s absolute orientation.

an] a[n]
$[nl— E(z) Demod . Slicer

ejwcn —

Figure 12.24 Carrier recovery by decision-directed loop.

12.4.2 Timing Recovery

Timing recovery is the ensemble of strategies which are put in place to re-
cover the synchronism between transmitter and receiver at the level of
discrete-time samples. This synchronism, which was one of the assump-
tions of back-to-back operation, is lost in real-world situations because of
propagation delays and because of slight hardware differences between de-
vices. The D/A and A/D, being physically separate, run on independent
clocks which may exhibit small frequency differences and a slow drift. The
purpose of timing recovery is to offset such hardware discrepancies in the
discrete-time domain.

A Digital PLL. Traditionally, a Phase-Locked-Loop (PLL) is an analog cir-
cuit which, using a negative feedback loop, manages to keep an internal os-
cillator “locked in phase” with an external oscillatory input. Since the in-
ternal oscillator’s parameters can be easily retrieved, PLLs are used to accu-
rately measure the frequency and the phase of an external signal with re-
spect to an internal reference.

In timing recovery, we use a PLL-like structure as in Figure 12.25 to com-
pensate for sampling offsets. To see how this PLL works, assume that the
discrete-time samples §[n] are obtained by the A/D converter as

s[n]=3(t,) (12.31)
where the sequence of sampling instants ¢, is generated as
ther =tn+ T[n) (12.32)
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sin(2n fot +0) —> - sin(2wn/N)

In

(v 1)
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Figure 12.25 A digital PLL with a sinusoidal input.

Normally, the sampling period is a constant and T[n] = T; = 1/F; but here
we will assume that we have a special A/D converter for which the sampling
period can be dynamically changed at each sampling cycle. Assume the in-
put to the sampler is a zero-phase sinusoid of known frequency fy = F;/N
for NeNand N >2:

x(t)=sin(2nfot)

If the sampling period is constant and equal to T; and if the A/D is syn-
chronous to the sinusoid, the sampled signal are simply:

x[n] =sin (Zﬁﬂ n)

We can test such synchronicity by downsampling x[#n] by N and we should
have xyp[n] = 0 for all n; this situation is shown at the top of Figure 12.26
and we can say that the A/D is locked to the reference signal x(t).

If the local clock has a time lag 7 with respect to the reference time of
the incoming sinusoid (or, alternatively, if the incoming sinusoid is delayed
by 7), then the discrete-time, downsampled signal is the constant:

xnypln]=sin(27 fo7) (12.33)

Note, the A/D is still locked to the reference signal x(¢), but it exhibits a
phase offset, as shown in Figure 12.26, middle panel. If this offset is suf-
ficiently small then the small angle approximation for the sine holds and
xnpln] provides a direct estimate of the corrective factor which needs to be
injected into the A/D block. If the offset is estimated at time ny, it will suffice
to set

T,—7 forn=
T[n]={ sTT oER=To (12.34)

Ts for n > ny

for the A/D to be locked to the input sinusoid.
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Figure 12.26 Timing recovery from a continuous-time sinusoid, with reference
samples drawn as white circles: perfect locking (top); phase offset (middle) and
frequency drift (bottom). All plots are in the time reference of the input sinusoid.

Suppose now that the the A/D converter runs slightly slower than its
nominal speed or, in other words, that the effective sampling frequency is
F/ = B F;, with 8 < 1. As a consequence the sampling period is T} = T;/f >
T; and the discrete-time, downsampled signal becomes

xnpln]=sin((27/B)n) (12.35)
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i.e. it is a sinusoid of frequency 27t 3; this situation is shown in the bottom
panel of Figure 12.26. We can use the downsampled signal to estimate 3 and
we can re-establish a locked PLL by setting

T[n]= L (12.36)
3 .

The same strategy can be employed if the A/D runs faster than normal, in
which case the only difference is that § > 1.

A Variable Fractional Delay. In practice, A/D converters with “tunable”
sampling instants are rare and expensive because of their design complex-
ity; furthermore, a data path from the discrete-time estimators fo the analog
sampler would violate the digital processing paradigm in which all of the
receiver works in discrete time and the one-way interface from the analog
world is the A/D converter. In other words: the structure in Figure 12.25 is
not a truly digital PLL loop; to implement a completely digital PLL structure,
the adjustment of the sampling instants must be performed in discrete time
via the use of a programmable fractional delay.

Let us start with the case of a simple time-lag compensation for a
continuous-time signal x(¢). Of the total delay ¢4, we assume that the bulk
delay has been correctly estimated so that the only necessary compensation
is that of a fractional delay 7, with |7| < 1/2. From the available sampled sig-
nal x[n] = x(n T;) we want to obtain the signal

x:[nl=x(nT;+1T;) (12.37)

using discrete-time processing only. Since we will be operating in discrete
time, we can assume T; = 1 with no loss of generality and so we can write
simply:

x:[nl=x(n+71)

We know from Section 9.7.2 that the “ideal” way to obtain x.[n] from
x[n] is to use a fractional delay filter:

xz[n]=d-[n]*x[n]

where D (e/®) = e/®“7. We have seen that the problem with this approach is
that D (e/®) is an ideal filter, and that its impulse response is a sinc, whose
slow decay leads to very poor FIR approximations. An alternative approach
relies on the local interpolation techniques we saw in Section 9.4.2. Suppose
2N+1 samples of x[n] are available around the index n = ny; we could easily
build a local continuous-time interpolation around r as
N
(no;t)= Y xlno— k] L) (12.38)
k=—N
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where L(,iv) (t)is the k-th Lagrange polynomial of order 2N defined in (9.14).
The approximation

X(no;t)~x(no+t)

is good, at least, over a unit-size interval centered around ny, i.e. for [f| < 1/2
and therefore we can obtain the fractionally delayed signal as

Xz [ng] =X(no;7) (12.39)

as shown in Figure 12.27 for N =1 (i.e. for a three-point local interpolation).

3

-1

Figure 12.27 Local interpolation around ny =0 and T; =1 for time lag compensa-
tion. The Lagrange polynomial components are plotted as dotted lines. The dashed
lines delimit the good approximation interval. The white dot is the fractionally de-
layed sample for n = n,.

Equation (12.39) can be rewritten in general as

N
x:[n]= Z x[n—k] L%V)(T)=df[n]*x[n] (12.40)
k=—N
which is the convolution of the input signal with a (2N 4 1)-tap FIR whose
coefficients are the values of the 2N + 1 Lagrange polynomials of order 2N
computed in t = 7. For instance, for the above three-point interpolator, we
have

dT[—l]:TTgl
d.[0]=—(t+1)(t—1)
dTm:TT;l

The resulting FIR interpolators are expressed in noncausal form purely out
of convenience; in practical implementations an additional delay would
make the whole processing chain causal.
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The fact that the coefficients d.[n] are expressed in closed form as a
polynomial function of T makes it possible to efficiently compensate for a
time-varying delay by recomputing the FIR taps on the fly. This is actually
the case when we need to compensate for a frequency drift between trans-
mitter and receiver, i.e. we need to resample the input signal. Suppose that,
by using the techniques in the previous Section, we have estimated that the
actual sampling frequency is either higher or lower than the nominal sam-
pling frequency by a factor B which is very close to 1. From the available
samples x[n] = x(n T;) we want to obtain the signal

nT
win=x %)

using discrete-time processing only. With a simple algebraic manipulation
we can write

1-p

xﬁ[n]:x(nTs-l—n Ts):x(nTs+nfT5) (12.41)
Here, we are in a situation similar to that of Equation (12.37) but in this case
the delay term is linearly increasing with n. Again, we can assume T; =1
with no loss of generality and remark that, in general, f is very close to one
so thatitis

T=%NO

Nonetheless, regardless of how small 7 is, at one point the delay term nt
will fall outside of the good approximation interval provided by the local
interpolation scheme. For this, a more elaborate strategy is put in place,
which we can describe with the help of Figure 12.28 in which  =0.82 and
therefore 7~ 0.22:

1. We assume initial synchronism, so that xg[0] = x(0).

2. Forn=1and n=2,0< nt <1/2; therefore x5[1] = x;[1] and xg[2] =
X27[2] can be computed using (12.40).

3. For n =3, 37 > 1/2; therefore we skip x[3] and calculate xg[3] from a
local interpolation around x[4]: xg(3] = x./[4] with 7/=1 — 37 since
|T/| < 1/2.

4. For n =4, again, the delay 47 makes xz[4] closer to x[5], with an offset
of 7/ =1—47 so that 7’| < 1/2; therefore xg[4] = x/[5].
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Figure 12.28 Sampling frequency reduction (T; =1, = 0.82) in the discrete-time
domain using a programmable fractional delay; white dots represent the resampled
signal.

In general the resampled signal can be computed for all n using (12.40) as

xgln]=x,[n+7,] (12.42)
where
=fr ( +1) L (12.43)
Tp=1rac| nt 7 7 .
1
Yn= {nﬂr EJ (12.44)

It is evident that, 7, is the quantity nt “wrapped” over the [—1/2,1/2] inter-
val® while y,, is the number of samples skipped so far. Practical algorithms
compute 7, and (n + y,) incrementally.

Figure 12.29 shows an example in which the sampling frequency is too
slow and the discrete-time signal must be resampled at a higher rate. In the
figure, B =1.28 so that 7 ~ —0.22; the first resampling steps are:

1. We assume initial synchronism, so that xg[0] = x(0).

2. Forn=1and n =2, —1/2 < n7; therefore xg[1] = x;[1] and xg[2] =
X2:[2] can be computed using (12.40).

3. For n =3, 37 < —1/2; therefore we fall back on x[2] and calculate x4 [3]
from a local interpolation around x[2] once again: xg[3] = x,/[2] with
7/=1+37and|7/|<1/2.

©®The frac function extracts the fractionary part of a number and is defined as frac(x) =
x —|x].
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Figure 12.29 Sampling frequency increase (T; = 1, = 1.28) in the discrete-time
domain using a programmable fractional delay.

4. For n = 4, the delay 47 makes xg[4] closer to x[3], with an offset of
7/ =1+47 so that |7/| < 1/2; therefore xg[4] = x/[5].

In general the resampled signal can be computed for all n using (12.40) as
xpln]=x:,[n—7yn] (12.45)

where 7, and 7y, are as in (12.43) and (12.44).

Nonlinearity. The programmable delay is inserted in a PLL-like loop as
in Figure 12.30 where .7 {-} is a processing block which extracts a suitable
sinusoidal component from the baseband signal.(”? Hypothetically, if the
transmitter inserted an explicit sinusoidal component p[n] in the baseband
with a frequency equal to the baud rate and with zero phase offset with re-

s()—| - b.(2) Demod bin]

£ —@— 711

Figure 12.30 A truly digital PLL for timing recovery.

TmyYn

(M Note that timing recovery is performed in the baseband signal since in baseband every-
thingis slower and therefore easier to track; we also assume that equalization and carrier
recovery proceed independently and converge before timing recovery is attempted.
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spect to the symbol times, then this signal could be used for synchronism;
indeed, from

. (2nfy \_ . (2=m
p[n]—sm( E n)—sm(?n)

we would have pxp[n] = 0. If this component was present in the signal,
then the block .#{-} would be a simple resonator # with peak frequencies
at w =+271/K, as described in Section 7.3.1.

Now, consider more in detail the baseband signal b[n] in (12.4); if we
always transmitted the same symbol a, then b[n] = a ), g[n — iK] would
be a periodic signal with period K and, therefore, it would contain a strong
spectral line at 27t/ K which we could use for synchronism. Unfortunately,
since the symbol sequence a[n] is a balanced stochastic sequence we have
that:

E[b[n]] =E[a[n]]Zg[n—iK]=0 (12.46)

and so, even on average, no periodic pattern emerges.®» The way around
this impasse is to use a fantastic “trick” which dates back to the old days
of analog radio receivers, i.e. we process the signal through a nonlinearity
which acts like a diode. We can use, for instance, the square magnitude
operator; if we process b[n] with this nonlinearity, it will be

E[)b[n]ﬂ =;ZE[a[ma*[i]] gln—hKlgln—iK] (12.47)

Since we have assumed that a[n] is an uncorrelated i.i.d. sequence,
E[a[h)a*[i]] = o2 6[h—i]
and, therefore,

B[ {bln)}] =07 Y (gln—iK])* (12.48)

The last term in the above equation is periodic with period K and this means
that, on average, the squared signal contains a periodic component at the
frequency we need. By filtering the squared signal through the resonator
above (i.e. by setting .7 {x[n]} = %ﬂx[n] )2}), we obtain a sinusoidal com-
ponent suitable for use by the PLL.

® Again, a rigorous treatment of the topic would require the introduction of cyclostation-
ary analysis; here we simply point to the intuition and refer to the bibliography for a
more thorough derivation.
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Further Reading

Of course there are a good number of books on communications, which
cover the material necessary for analyzing and designing a communica-
tion system like the modem studied in this Chapter. A classic book pro-
viding both insight and tools is J. M. Wozencraff and 1. M. Jacobs’s Prin-
ciples of Communication Engineering (Waveland Press, 1990); despite its
age, it is still relevant. More recent books include Digital Communications
(McGraw Hill, 2000) by J. G. Proakis; Digital Communications: Fundamen-
tals and Applications (Prentice Hall, 2001) by B. Sklar, and Digital Commu-
nication (Kluwer, 2004) by E. A. Lee and D. G. Messerschmitt.

Exercise 12.1: Raised cosine. Why is the raised cosine an ideal filter?
What type of linear phase FIR would you use for its approximation?

Exercise 12.2: Digital resampling. Use the programmable digital de-
lay of Section 12.4.2 to design an exact sampling rate converter from CD to
DVD audio (Sect. 11.3). How many different filters /i, [n] are needed in total?
Does this number depend on the length of the local interpolator?

Exercise 12.3: A quick design. Assume the specifications for a given
telephone line are fiin = 300 Hz, fimax = 3600 Hz, and a SNR of at least
28 dB. Design a set of operational parameters for a modem transmitting on
this line (baud rate, carrier frequency, constallation size). How many bits
per second can you transmit?

Exercise 12.4: The shape of a constellation. One of the reasons for
designing non-regular constellations, or constellation on lattices, different
than the upright square grid, is that the energy of the transmitted signal is di-
rectly proportional to the parameter o2 as in (12.10). By arranging the same
number of alphabet symbols in a different manner, we can sometimes re-
duce o2 and therefore use a larger amplification gain while keeping the total
output power constant, which in turn lowers the probability of error. Con-
sider the two 8-point constellations in the Figure 12.12 and Figure 12.13 and
compute their intrinsic power o2 for uniform symbol distributions. What
do you notice?
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A

A/D conversion, 283
aliasing, 255, 250-259, 264

in multirate, 297
allpass filter, 124
alphabet, 333
alternation theorem, 186
analog

computer, 11

transmission, 13
analytic signal, 133, 337
anticausal filter, 114
aperiodic signal periodic, 31

B

bandlimited signal, 239, 264
bandpass

filter, 124, 131

signal, 96, 137
bandwidth, 129, 138

constraint, 328

of telephone channel, 319
base-12, 4
baseband spectrum, 95
basis

Fourier, 41

orthonormal, 40

sinc, 248

span, 48

subspace, 48

(vector space), 40, 47-51
baud rate, 337
Bessel’s inequality, 50

Index

BIBO, 114
Blackman window, 178

C
carrier, 137, 337
recovery, 353
cascade structure, 195
causal
CCDE, 149
filter, 113
CCDE, 134, 134-136
solving, 148
CD, 15, 102, 293, 311
SNR, 281
CD to DVD conversion, 311
Chebyshev polynomials, 182
circulant matrix, 202
compander, 288
complex exponential, 24, 61
aliasing, 33, 251
Constant-Coefficient Difference
Equation, see CCDE
constellation, 342
continuous time vs. discrete time,
7-10
convolution, 110
as inner product, 112
associativity, 111
circular, 202
in continuous time, 2
of DTFTs, 112, 174
theorem, 122, 238
covariance, 221
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critical sampling, 256
cross-correlation, 222

D
D/A conversion, 286
DAT (Digital Audio Tape), 293
data compression rates, 15
decimation, 294
decision-directed loop, 354
delay, 26, 117, 124, 125
fractional, 125, 261
demodulation, 138
DEFS, 71-72
properties, 85, 89
DFT, 64, 63-71
matrix form, 64
properties, 86
zero padding, 94
dichotomy paradox, see Zeno
differentiator
approximate, 27
exact, 260
digital
computer, 11
etymology of, 1
frequency, 25, 101-102
revolution, 13
Dirac delta, 78
DTFT of, 80
pulse train, 79
direct form, 197
Discrete Fourier Series, see DFS
Discrete Fourier Transform, see DFT
discrete time, 21
vs. continuous time, 7-10
Discrete-Time Fourier Transform,
see DTFT
discrete-time
signal, 19
finite-length, 29
finite-support, 31
infinite-length, 30
periodic, 31
vs. digital, 12
distortion nonlinear, 287
downsampling, 294, 294-297

Index

DTFT, 72, 72-81
from DFS, 81
from DFT, 82
of unit step, 103
plotting, 91-92
properties, 83, 88
DVD, 12, 293, 311, 319

E
eigenfunctions, 121
energy of a signal, 27
equiripple filter, 187
error correcting codes, 15

F
FFT, 93
complexity, 203
zero padding, 94
filter, 109
allpass, 205
computational cost, 195
delay, 117
frequency response, 121
filter design, 165-170
FIR, 171-190
minimax, 179-190
window method, 171-179
IIR, 190
specifications, 168
filter structures, 195-200
cascade, 195
direct forms, 197
parallel, 196
finite-length signal, 29, 53
filtering, 200
finite-support signal, 31
FIR, 113
linear phase, 154
types, 180
vs. IIR, 166
zero locations, 181
first-order hold, 242
(discrete-time), 308
Fourier basis, 41, 63
series, 263
transform (continuous time),
238



fractional delay, 125, 261
variable, 359
frequency domain, 60
response, 121
magnitude, 123
phase, 124

G
galena, 140
Gibbs phenomenon, 173
Goertzel filter, 204
group delay, 126
negative, 140

H
half-band filter, 101, 168, 303, 321,
336
Hamming window, 178
highpass
filter, 124, 131
signal, 95
Hilbert
demodulation, 349
filter, 131
space, 41-46
completeness, 45

I
ideal filter, 129
bandpass, 131
highpass, 131
Hilbert, 131
lowpass, 129
IIR, 113
vs. FIR, 166
impulse, 23
response, 113-115
infinite-length signal, 30, 54
inner product, 39
approximation by, 46
Euclidean distance, 46
for functions, 237
integrator
discrete-time, 26
leaky, 117
planimeter, 8
RC network, 8

Index

369

interpolation, 236, 240-246
in multirate, 307
local, 241

first-order, 242

Lagrange, 244

zero-order, 241
sinc, 246

K
Kaiser formula, 188
Karplus-Strong, 207

L
Lagrange interpolation, 243, 244, 359
polynomials, 244
leaky integrator, 117-120, 127, 157,
192
Leibnitz, 5
linear phase, 125
generalized, 179
linearity, 110
Lloyd-Max, 282
lowpass
filter, 124, 129
signal, 95

M

magnitude response, 123
mapper, 333
Matlab, 17
modem, 320
modulation

AM, 329

AM radio, 137

theorem, 122
moving average, 115-116, 126, 156,

192

u-law, 288

N

negative frequency, 61

Nile floods, 2

noise
amplification, 14
complex Gaussian, 344
floor, 328
thresholding, 14
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nonlinear processing, 140, 364
notch, 192

(0]
optimal filter design, seefilter design,
FIR, minimax
orthonormal basis, 40
oversampling, 255
in A/D conversion, 311
in D/A conversion, 314

P
parallel structure, 196
Parks-McClellan, see filter design,
FIR, minimax

Parseval’s identity, 50

for the DFS, 85

for the DFT, 90

for the DTFT, 84
passband, 124, 168
periodic

extension, 31

signal, 53

filtering, 201

periodization, 33, 76, 263, 265
phase

linear, 125

response, 124

zero, 97
phonograph, 7
planimeter, seeintegrator
PLL (phase locked loop), 356
Poisson sum formula, 263
pole-zero plot, 153
power

constraint, 328, 347

of a signal, 28

spectral density, 226
product of signals, 26
programmable delay, 359
PSD, see power spectral density
Pythagoras, 4

Q
QAM, 341-344
constellation, 342

Index

quadrature amplitude modulation,
see QAM
quantization, 10-12, 276, 275-276
nonuniform, 289
reconstruction, 277
uniform, 278-281

R
raised cosine, 336
random
variable, 217-219
vector, 219-220
Gaussian, 220
process, 221-227
covariance, 221
cross-correlation, 222
ergodic, 222
filtered, 229
Gaussian, 223
power spectral density, 224—
226
stationary, 222
white noise, 227
rational sampling rate change, 310
rect, 130, 239
rectangular window, 173
region of convergence, see ROC
reproducing formula, 27
resonator, 192
ROC, 150
roots
of complex polynomial, 158, 265
of transfer function, 153
of unity, 63

S
sampling, 236
frequency, 236, 250
theorem, 10, 249
scaling, 26
sequence, see discrete-time signal
shift, 26
sinc, 130, 240, 266
interpolation, 246
(discrete-time), 308
slicer, 344



SNR, 281, 313, 328

of aCD, 281

of a telephone channel, 331
spectrogram, 98
spectrum

magnitude, 95

overlap, 138

periodicity, 75

phase, 96
stability, 114

criteria, 114, 152
stationary process, 222
stopband, 124, 168
sum of signals, 26
system LIT, 109-110

T
telephone channel, 330
bandwidth, 319, 331
SNR, 319, 331
thermograph, 7
time domain, 60
time-invariance, 110
timing recovery, 356-364
Toeplitz matrix, 232
transatlantic cable, 15
transfer function, 148, 152
ROC and stability, 152
roots, 153
sketching, 155

Index

transmission reliability, 346
triangular window, 176

(1)
unit step, 23
DTFT, 103
upsampling, 304

\"
vector, 39
distance, 39
norm, 39
orthogonality, 39
space, 38-40
basis, 40
vinyl, 12, 247, 324

w
wagon wheel effect, 33
white noise, 227
Wiener filter, 231

V4
Zeno, 4

zero initial conditions, 119, 136

zero-order hold, 241
(discrete-time), 308

z-transform, 147, 147-152
of periodic signals, 158
ROC, 150
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